Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 1 - Chân trời sáng tạo. Bài tập 15 trang 37 là một phần quan trọng trong chương trình học, đòi hỏi học sinh nắm vững kiến thức và kỹ năng giải toán.
Chúng tôi hiểu rằng việc tự học đôi khi gặp nhiều khó khăn. Vì vậy, đội ngũ giaitoan.edu.vn đã biên soạn lời giải chi tiết, dễ hiểu, giúp bạn tự tin chinh phục bài tập này.
Trong một nhà hàng, mỗi tuần để chế biến x phần ăn (x lấy giá trị trong khoảng từ 30 đến 120) thì chi phí trung bình (đơn vị: nghìn đồng) của một phần ăn được cho bởi công thức: \(\overline C (x) = 2x - 230 + \frac{{7200}}{x}\) a) Khảo sát và vẽ đồ thị hàm số \(\overline C (x)\) trên [30; 120]. b) Từ kết quả trên, tìm số phần ăn sao cho chi phí trung bình của một phần ăn là thấp nhất.
Đề bài
Trong một nhà hàng, mỗi tuần để chế biến x phần ăn (x lấy giá trị trong khoảng từ 30 đến 120) thì chi phí trung bình (đơn vị: nghìn đồng) của một phần ăn được cho bởi công thức:
\(\overline C (x) = 2x - 230 + \frac{{7200}}{x}\)
a) Khảo sát và vẽ đồ thị hàm số \(\overline C (x)\) trên [30; 120].
b) Từ kết quả trên, tìm số phần ăn sao cho chi phí trung bình của một phần ăn là thấp nhất.
Phương pháp giải - Xem chi tiết
a) Bước 1. Tìm tập xác định của hàm số
Bước 2. Xét sự biến thiên của hàm số
− Tìm đạo hàm y', xét dấu y', xác định khoảng đơn điệu, cực trị (nếu có) của hàm số.
− Tìm giới hạn tại vô cực, giới hạn vô cực của hàm số và các đường tiệm cận của đồ thị hàm số (nếu có).
− Lập bảng biến thiên của hàm số.
Bước 3. Vẽ đồ thị của hàm số
− Xác định các điểm cực trị (nếu có), giao điểm của đồ thị với các trục toạ độ (nếu có và dễ tìm), ...
− Vẽ các đường tiệm cận của đồ thị hàm số (nếu có).
− Vẽ đồ thị hàm số.
b) Quan sát bảng biến thiên
Lời giải chi tiết
Tập xác định: \(D = [30;120]\)
\(\overline C '(x) = 2 - \frac{{7200}}{{{x^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 60(loai)\\x = 60\end{array} \right.\)
Trên các khoảng (30; 60) thì y' < 0 nên hàm số nghịch biến trên khoảng đó. Trên khoảng (60; 120) thì y' > 0 nên hàm số đồng biến trên khoảng đó.
Hàm số đạt cực đại tại x = 60 và \({y_{cd}} = 10\)
\(\mathop {\lim }\limits_{x \to - \infty } \overline C (x) = \mathop {\lim }\limits_{x \to - \infty } (2x - 230 + \frac{{7200}}{x}) = - \infty \); \(\mathop {\lim }\limits_{x \to + \infty } \overline C (x) = \mathop {\lim }\limits_{x \to + \infty } (2x - 230 + \frac{{7200}}{x}) = + \infty \)
Đồ thị hàm số:
b) Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_{[30;120]} \overline C (x) = \overline C (60) = 10\)
Vậy để chi phí trung bình của một phần ăn là thấp nhất thì số phần ăn là 10
Bài tập 15 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo thuộc chương trình học về giới hạn của hàm số. Đây là một chủ đề nền tảng, đóng vai trò quan trọng trong việc xây dựng các kiến thức toán học cao hơn. Bài tập này thường yêu cầu học sinh vận dụng các định nghĩa, tính chất của giới hạn để tính giới hạn của hàm số tại một điểm hoặc khi x tiến tới vô cùng.
Bài tập 15 thường bao gồm các dạng bài sau:
Để giúp học sinh hiểu rõ hơn về cách giải bài tập 15, chúng tôi xin trình bày lời giải chi tiết cho từng câu hỏi:
...
...
...
Ngoài các phương pháp đã đề cập ở trên, học sinh có thể tham khảo thêm một số phương pháp sau:
Để củng cố kiến thức và kỹ năng giải bài tập về giới hạn, học sinh nên luyện tập thêm các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Việc luyện tập thường xuyên sẽ giúp học sinh nắm vững kiến thức và tự tin hơn khi làm bài kiểm tra.
Bài tập 15 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo là một bài tập quan trọng, giúp học sinh rèn luyện kỹ năng tính giới hạn của hàm số. Hy vọng với lời giải chi tiết và các phương pháp giải đã trình bày, học sinh sẽ tự tin chinh phục bài tập này và đạt kết quả tốt trong môn Toán.
Dạng bài | Phương pháp giải |
---|---|
Tính giới hạn tại một điểm | Phân tích thành nhân tử, nhân liên hợp |
Tính giới hạn khi x tiến tới vô cùng | Chia cả tử và mẫu cho bậc cao nhất |
Sử dụng định lý giới hạn | Áp dụng các định lý về giới hạn |