Logo Header
  1. Môn Toán
  2. Giải bài tập 6 trang 86 SGK Toán 12 tập 1 - Chân trời sáng tạo

Giải bài tập 6 trang 86 SGK Toán 12 tập 1 - Chân trời sáng tạo

Giải bài tập 6 trang 86 SGK Toán 12 tập 1 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 1 - Chân trời sáng tạo. Bài tập 6 trang 86 là một phần quan trọng trong chương trình học, đòi hỏi học sinh nắm vững kiến thức về đạo hàm và ứng dụng của nó.

Chúng tôi hiểu rằng việc tự giải bài tập đôi khi gặp khó khăn, vì vậy đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải chi tiết, dễ hiểu, giúp bạn hiểu rõ bản chất của bài toán và áp dụng vào các bài tập tương tự.

Thời gian hoàn thành một bài viết chính tả của một số học sinh lớp 4 hai trường X và Y được ghi lại ở bảng sau: a) Nếu so sánh theo số trung bình thì học sinh trường nào viết nhanh hơn? b) Nếu so sánh theo khoảng tứ phân vị thì học sinh trường nào có tốc độ viết đồng đều hơn? c) Nếu so sánh theo độ lệch chuẩn thì học sinh trường nào có tốc độ viết đồng đều hơn?

Đề bài

Thời gian hoàn thành một bài viết chính tả của một số học sinh lớp 4 hai trường X và Y được ghi lại ở bảng sau:

Giải bài tập 6 trang 86 SGK Toán 12 tập 1 - Chân trời sáng tạo 1

a) Nếu so sánh theo số trung bình thì học sinh trường nào viết nhanh hơn? b) Nếu so sánh theo khoảng tứ phân vị thì học sinh trường nào có tốc độ viết đồng đều hơn? c) Nếu so sánh theo độ lệch chuẩn thì học sinh trường nào có tốc độ viết đồng đều hơn?

Phương pháp giải - Xem chi tiếtGiải bài tập 6 trang 86 SGK Toán 12 tập 1 - Chân trời sáng tạo 2

Số trung bình nhỏ hơn thì học sinh trường đó viết nhanh hơn

Khoảng tứ phân vị nhỏ hơn thì học sinh trường đó có tốc độ viết đồng đều hơn

Độ lệch chuẩn nhỏ hơn thì học sinh trường đó có tốc độ viết đồng đều hơn

Lời giải chi tiết

Giải bài tập 6 trang 86 SGK Toán 12 tập 1 - Chân trời sáng tạo 3

a) Cỡ mẫu: n = 50

Xét số liệu của trường X:

Số trung bình: \(\overline {{x_X}} = \frac{{8.6,5 + 10.7,5 + 13.8,5 + 10.9,5 + 9.10,5}}{{50}} = 8,54\)

Xét số liệu của trường Y:

Số trung bình: \(\overline {{x_Y}} = \frac{{4.6,5 + 12.7,5 + 17.8,5 + 14.9,5 + 3.10,5}}{{50}} = 8,5\)

Vậy nếu so sánh theo số trung bình thì học sinh trường Y viết nhanh hơn

b) Gọi \({x_1};{\rm{ }}{x_2}; \ldots ;{\rm{ }}{x_{50}}\) là mẫu số liệu gốc về thời gian hoàn thành một bài viết chính tả của 50 học sinh lớp 4 trường X được xếp theo thứ tự không giảm.

Ta có: \({x_1}; \ldots ;{\rm{ }}{x_8} \in [6;7)\); \({x_9}; \ldots ;{\rm{ }}{x_{18}} \in [7;8)\);\({x_{19}}; \ldots ;{\rm{ }}{x_{31}} \in [8;9)\);\({x_{32}}; \ldots ;{\rm{ }}{x_{41}} \in [9;10)\);\({x_{42}}; \ldots ;{\rm{ }}{x_{50}} \in [10;11)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{13}} \in [7;8)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 7 + \frac{{\frac{{50}}{4} - 8}}{{10}}(8 - 7) = 7,45\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{38}} \in [9;10)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 9 + \frac{{\frac{{3.50}}{4} - (8 + 10 + 13)}}{{10}}(10 - 9) = 9,65\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 2,2\)

Gọi \({y_1};{\rm{ }}{y_2}; \ldots ;{\rm{ }}{y_{50}}\) là mẫu số liệu gốc về thời gian hoàn thành một bài viết chính tả của 50 học sinh lớp 4 trường Y được xếp theo thứ tự không giảm.

Ta có: \({y_1}; \ldots ;{\rm{ }}{y_4} \in [6;7)\); \({y_5}; \ldots ;{\rm{ }}{y_{16}} \in [7;8)\);\({y_{17}}; \ldots ;{\rm{ }}{y_{33}} \in [8;9)\);\({y_{34}};...;{y_{47}} \in [9;10)\);\({y_{48}};...;{y_{50}} \in [10;11)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({y_{13}} \in [7;8)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}' = 7 + \frac{{\frac{{50}}{4} - 4}}{{12}}(8 - 7) = \frac{{185}}{{24}}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({y_{38}} \in [9;10)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}' = 9 + \frac{{\frac{{3.50}}{4} - (4 + 12 + 17)}}{{14}}(10 - 9) = \frac{{261}}{{28}}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q}' = {Q_3}' - {Q_1}' = \frac{{271}}{{168}}\)

Vậy nếu so sánh theo khoảng tứ phân vị thì học sinh trường Y có tốc độ viết đồng đều hơn

c) Xét số liệu của trường X:

Độ lệch chuẩn: \({\sigma _Y} = \sqrt {\frac{{8.6,{5^2} + 10.7,{5^2} + 13.8,{5^2} + 10.9,{5^2} + 9.10,{5^2}}}{{50}} - 8,{{54}^2}} \approx 1,33\)

Xét số liệu của trường Y:

Độ lệch chuẩn: \({\sigma _Y} = \sqrt {\frac{{4.6,{5^2} + 12.7,{5^2} + 17.8,{5^2} + 14.9,{5^2} + 3.10,{5^2}}}{{50}} - 8,{5^2}} \approx 1,04\)

Vậy nếu so sánh theo độ lệch chuẩn thì học sinh trường Y có tốc độ viết đồng đều hơn

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 6 trang 86 SGK Toán 12 tập 1 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng đề thi toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 6 trang 86 SGK Toán 12 tập 1 - Chân trời sáng tạo: Hướng dẫn chi tiết

Bài tập 6 trang 86 SGK Toán 12 tập 1 - Chân trời sáng tạo thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản sau:

  • Định nghĩa đạo hàm: Hiểu rõ khái niệm đạo hàm của hàm số tại một điểm và trên một khoảng.
  • Các quy tắc tính đạo hàm: Nắm vững các quy tắc tính đạo hàm của tổng, hiệu, tích, thương và hàm hợp.
  • Ứng dụng đạo hàm: Biết cách sử dụng đạo hàm để tìm cực trị, khoảng đơn điệu và vẽ đồ thị hàm số.

Phân tích bài toán

Bài tập 6 thường yêu cầu học sinh thực hiện các thao tác sau:

  1. Tính đạo hàm của hàm số đã cho.
  2. Tìm tập xác định của hàm số.
  3. Giải phương trình đạo hàm bằng 0 để tìm các điểm cực trị.
  4. Xác định khoảng đơn điệu của hàm số dựa vào dấu của đạo hàm.
  5. Kết luận về cực đại, cực tiểu của hàm số.

Lời giải chi tiết bài tập 6 trang 86

Để minh họa, chúng ta sẽ cùng giải một bài tập cụ thể. Giả sử bài tập 6 yêu cầu khảo sát hàm số y = x3 - 3x2 + 2.

Bước 1: Tính đạo hàm

y' = 3x2 - 6x

Bước 2: Tìm tập xác định

Hàm số y = x3 - 3x2 + 2 xác định trên R.

Bước 3: Tìm điểm cực trị

Giải phương trình y' = 0:

3x2 - 6x = 0

3x(x - 2) = 0

x = 0 hoặc x = 2

Bước 4: Xác định khoảng đơn điệu

Xét dấu của y':

  • Khi x < 0: y' > 0, hàm số đồng biến.
  • Khi 0 < x < 2: y' < 0, hàm số nghịch biến.
  • Khi x > 2: y' > 0, hàm số đồng biến.

Bước 5: Kết luận

Hàm số đạt cực đại tại x = 0, giá trị cực đại là y(0) = 2.

Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y(2) = -2.

Mở rộng và các bài tập tương tự

Sau khi nắm vững phương pháp giải bài tập 6 trang 86, bạn có thể áp dụng vào các bài tập tương tự với các hàm số khác nhau. Điều quan trọng là phải hiểu rõ bản chất của bài toán và áp dụng các quy tắc tính đạo hàm một cách chính xác.

Ngoài ra, bạn có thể tham khảo thêm các tài liệu học tập khác như sách giáo khoa, sách bài tập, các trang web học toán online để nâng cao kiến thức và kỹ năng giải toán.

Lưu ý khi giải bài tập

  • Luôn kiểm tra lại kết quả tính đạo hàm.
  • Chú ý đến tập xác định của hàm số.
  • Sử dụng bảng xét dấu để xác định khoảng đơn điệu một cách chính xác.
  • Kết luận về cực đại, cực tiểu dựa trên dấu của đạo hàm và giá trị của hàm số tại các điểm cực trị.

Tổng kết

Bài tập 6 trang 86 SGK Toán 12 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Bằng cách nắm vững các kiến thức cơ bản và áp dụng phương pháp giải đúng, bạn có thể tự tin giải quyết bài tập này và các bài tập tương tự một cách hiệu quả.

Tài liệu, đề thi và đáp án Toán 12