Logo Header
  1. Môn Toán
  2. Giải bài tập 8 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 8 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 8 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 8 trang 27 SGK Toán 12 tập 2 theo chương trình Chân trời sáng tạo.

Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và giúp bạn nắm vững kiến thức Toán học.

Sử dụng tích phân, tính thể tích của hình chóp tứ giác đều có cạnh đáy bằng (a) và chiều cao bằng (h).

Đề bài

Sử dụng tích phân, tính thể tích của hình chóp tứ giác đều có cạnh đáy bằng \(a\) và chiều cao bằng \(h\).

Giải bài tập 8 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo 1

Phương pháp giải - Xem chi tiếtGiải bài tập 8 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo 2

Chọn trục \(Ox\) sao cho \(O\) trùng với đỉnh của khối chóp.

Dựng một mặt phẳng cắt trục \(Ox\) tại điểm có hoành độ \(x\). Mặt phẳng đó cắt khối chóp \(O.ABCD\) với mặt cắt là hình vuông \(A'B'C'D'\).

Tính độ dài cạnh \(A'B'\), sau đó tính diện tích mặt cắt \(S\left( x \right) = {S_{A'B'C'D'}}\), từ đó tính thể tích khối chóp tứ giác đều \(O.ABCD\) theo công thức \(V = \int\limits_0^h {S\left( x \right)dx} \).

Lời giải chi tiết

Giải bài tập 8 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo 3

Xét khối chóp đều \(O.ABCD\) có chiều cao \(OH = h\), độ dài cạnh đáy \(AB = a\)

Chọn trục \(Ox\) sao cho \(O\) trùng với đỉnh của khối chóp, mặt đáy \(\left( {ABCD} \right)\) cắt trục \(Ox\) tại điểm có hoành độ \(\) như hình vẽ.

Dựng một mặt phẳng cắt trục \(Ox\) tại điểm có hoành độ \(x\). Mặt phẳng đó cắt khối chóp \(O.ABCD\) với mặt cắt là hình vuông \(A'B'C'D'\).

Ta có \(\frac{{B'C'}}{{BC}} = \frac{{OB'}}{{OB}} = \frac{{OH'}}{{OH}} = \frac{x}{h} \Rightarrow B'C' = \frac{a}{h}x\).

Diện tích mặt cắt \(A'B'C'D'\) là \(S\left( x \right) = {\left( {\frac{a}{h}x} \right)^2} = \frac{{{a^2}}}{{{h^2}}}{x^2}\).

Vậy thể tích khối chóp đều \(O.ABCD\) là \(V = \int\limits_0^h {\left( {\frac{{{a^2}}}{{{h^2}}}{x^2}} \right)dx} = \frac{{{a^2}}}{{{h^2}}}\left. {\left( {\frac{{{x^3}}}{3}} \right)} \right|_0^h = \frac{{{a^2}}}{{{h^2}}}.\frac{{{h^3}}}{3} = \frac{{{a^2}h}}{3}\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 8 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng môn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 8 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo: Tổng quan

Bài tập 8 trang 27 SGK Toán 12 tập 2 thuộc chương trình Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của một đại lượng. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập 8 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo

Bài tập 8 thường bao gồm các dạng bài sau:

  • Dạng 1: Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước, có thể là hàm số đơn giản hoặc hàm số phức tạp.
  • Dạng 2: Tìm cực trị của hàm số: Yêu cầu tìm điểm cực đại, điểm cực tiểu của hàm số bằng cách giải phương trình đạo hàm bằng 0 và xét dấu đạo hàm.
  • Dạng 3: Khảo sát hàm số: Yêu cầu khảo sát sự biến thiên của hàm số, bao gồm khoảng đồng biến, khoảng nghịch biến, cực trị, giới hạn và đồ thị hàm số.
  • Dạng 4: Ứng dụng đạo hàm vào các bài toán thực tế: Yêu cầu giải các bài toán liên quan đến tốc độ thay đổi, tối ưu hóa, hoặc các bài toán vật lý, kinh tế.

Lời giải chi tiết bài tập 8 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo

Để giúp các bạn học sinh giải bài tập 8 trang 27 SGK Toán 12 tập 2 một cách hiệu quả, chúng tôi xin trình bày lời giải chi tiết cho từng câu hỏi:

Câu a: (Ví dụ minh họa)

Cho hàm số y = x3 - 3x2 + 2. Hãy tính đạo hàm của hàm số.

Lời giải:

y' = 3x2 - 6x

Câu b: (Ví dụ minh họa)

Tìm cực trị của hàm số y = x3 - 3x2 + 2.

Lời giải:

y' = 3x2 - 6x

Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.

Xét dấu đạo hàm, ta thấy:

  • Khi x < 0, y' > 0, hàm số đồng biến.
  • Khi 0 < x < 2, y' < 0, hàm số nghịch biến.
  • Khi x > 2, y' > 0, hàm số đồng biến.

Vậy hàm số đạt cực đại tại x = 0, ymax = 2 và đạt cực tiểu tại x = 2, ymin = -2.

Mẹo giải bài tập đạo hàm hiệu quả

Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:

  • Nắm vững các công thức tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các quy tắc tính đạo hàm một cách linh hoạt.
  • Kiểm tra lại kết quả sau khi giải xong.

Tài liệu tham khảo hữu ích

Ngoài SGK Toán 12 tập 2, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách bài tập Toán 12 tập 2.
  • Các trang web học toán online uy tín.
  • Các video hướng dẫn giải bài tập Toán 12 trên YouTube.

Kết luận

Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà chúng tôi đã cung cấp, các bạn học sinh sẽ tự tin hơn khi giải bài tập 8 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo. Chúc các bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12