Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 5 trang 65 SGK Toán 12 tập 1 theo chương trình Chân trời sáng tạo.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải một cách cẩn thận, kèm theo các giải thích rõ ràng để giúp bạn nắm vững kiến thức và kỹ năng.
Cho A(1; 2; –1), B(2; 1; –3), C(–3; 5; 1). Điểm D sao cho ABCD là hình bình hành có toạ độ là A. D(–4; 6; 3). B. D(–2; 2; 5). C. D(–2; 8; –3). D. D(–4; 6; –5)
Đề bài
Cho A(1; 2; –1), B(2; 1; –3), C(–3; 5; 1). Điểm D sao cho ABCD là hình bình hành có toạ độ là
A. D(–4; 6; 3).
B. D(–2; 2; 5).
C. D(–2; 8; –3).
D. D(–4; 6; –5)
Phương pháp giải - Xem chi tiết
Chứng minh ABCD có một cặp cạnh đối song song và bằng nhau
Lời giải chi tiết
Chọn A
Gọi \(D(x;y;z)\)
Ta có: \(\overrightarrow {AB} = (1; - 1; - 2)\); \(\overrightarrow {DC} = ( - 3 - x;5 - y;1 - z)\)
Để ABCD là hình bình hành thì \(\overrightarrow {AB} = \overrightarrow {DC} \Leftrightarrow \left\{ \begin{array}{l}1 = - 3 - x\\ - 1 = 5 - y\\ - 2 = 1 - z\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 4\\y = 6\\z = 3\end{array} \right. \Rightarrow D( - 4;6;3)\)
Bài tập 5 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn một bên, giới hạn tại một điểm và các tính chất của giới hạn để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức này là nền tảng quan trọng để học tập các chương trình Toán học nâng cao hơn.
Bài tập 5 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh tính giới hạn của hàm số tại một điểm cho trước. Các hàm số có thể là hàm đa thức, hàm hữu tỉ, hoặc các hàm số phức tạp hơn. Để giải quyết bài tập này, học sinh cần:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài tập 5:
Để giải câu a, ta cần tính giới hạn của hàm số f(x) khi x tiến tới một giá trị cụ thể. Ta có thể sử dụng các quy tắc tính giới hạn của tổng, hiệu, tích, thương và lũy thừa để đơn giản hóa biểu thức và tìm ra kết quả.
Ví dụ:
lim (x->2) (x^2 + 3x - 1) = 2^2 + 3*2 - 1 = 4 + 6 - 1 = 9
Câu b có thể yêu cầu tính giới hạn của một hàm số hữu tỉ. Trong trường hợp này, ta cần kiểm tra xem mẫu số có bằng 0 tại điểm giới hạn hay không. Nếu mẫu số bằng 0, ta cần rút gọn biểu thức trước khi tính giới hạn.
Ví dụ:
lim (x->1) (x^2 - 1) / (x - 1) = lim (x->1) (x - 1)(x + 1) / (x - 1) = lim (x->1) (x + 1) = 1 + 1 = 2
Câu c có thể yêu cầu tính giới hạn của một hàm số phức tạp hơn, ví dụ như hàm số chứa căn thức hoặc giá trị tuyệt đối. Trong trường hợp này, ta cần sử dụng các kỹ thuật biến đổi đại số để đơn giản hóa biểu thức và tìm ra kết quả.
Khi giải bài tập về giới hạn, bạn cần lưu ý một số điều sau:
Kiến thức về giới hạn có ứng dụng rộng rãi trong nhiều lĩnh vực của Toán học và các ngành khoa học khác. Ví dụ:
Để củng cố kiến thức về giới hạn, bạn có thể luyện tập thêm các bài tập sau:
Bài tập 5 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh nắm vững kiến thức về giới hạn. Hy vọng rằng với lời giải chi tiết và các lưu ý trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!