Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 3 trang 42 SGK Toán 12 tập 2 theo chương trình Chân trời sáng tạo.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong học tập.
Cho tứ diện (ABCD) có các đỉnh (Aleft( {4;0;2} right)), (Bleft( {0;5;1} right)), (Cleft( {4; - 1;3} right)), (Dleft( {3; - 1;5} right)). a) Hãy viết phương trình của các mặt phẳng (left( {ABC} right)) và (left( {ABD} right)). b) Hãy viết phương trình mặt phẳng (left( P right)) đi qua cạnh (BC) và song song với cạnh (AD).
Đề bài
Cho tứ diện \(ABCD\) có các đỉnh \(A\left( {4;0;2} \right)\), \(B\left( {0;5;1} \right)\), \(C\left( {4; - 1;3} \right)\), \(D\left( {3; - 1;5} \right)\).
a) Hãy viết phương trình của các mặt phẳng \(\left( {ABC} \right)\) và \(\left( {ABD} \right)\).
b) Hãy viết phương trình mặt phẳng \(\left( P \right)\) đi qua cạnh \(BC\) và song song với cạnh \(AD\).
Phương pháp giải - Xem chi tiết
a) Mặt phẳng \(\left( {ABC} \right)\) đi qua ba điểm \(A\), \(B\), \(C\) nên sẽ nhận \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) làm một cặp vectơ chỉ phương. Suy ra một vectơ pháp tuyến của mặt phẳng \(\left( {ABC} \right)\) là \(\overrightarrow {{n_{\left( {ABC} \right)}}} = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\), rồi viết phương trình mặt phẳng \(\left( {ABC} \right)\).
Mặt phẳng \(\left( {ABD} \right)\) đi qua ba điểm \(A\), \(B\), \(D\) nên sẽ nhận \(\overrightarrow {AB} \) và \(\overrightarrow {AD} \) làm một cặp vectơ chỉ phương. Suy ra một vectơ pháp tuyến của mặt phẳng \(\left( {ABD} \right)\) là \(\overrightarrow {{n_{\left( {ABD} \right)}}} = \left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right]\), rồi viết phương trình mặt phẳng \(\left( {ABD} \right)\).
b) Mặt phẳng \(\left( P \right)\) đi qua cạnh \(BC\) và song song với cạnh \(AD\) nên có một cặp vectơ chỉ phương là \(\overrightarrow {BC} \) và \(\overrightarrow {AD} \). Suy ra một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) là \(\overrightarrow {{n_{\left( P \right)}}} = \left[ {\overrightarrow {BC} ,\overrightarrow {AD} } \right]\), rồi viết phương trình mặt phẳng \(\left( P \right)\).
Lời giải chi tiết
a) Mặt phẳng \(\left( {ABC} \right)\) đi qua ba điểm \(A\left( {4;0;2} \right)\), \(B\left( {0;5;1} \right)\), \(C\left( {4; - 1;3} \right)\) nên sẽ nhận \(\overrightarrow {AB} \left( { - 4;5; - 1} \right)\) và \(\overrightarrow {AC} \left( {0; - 1;1} \right)\) làm một cặp vectơ chỉ phương. Suy ra một vectơ pháp tuyến của mặt phẳng \(\left( {ABC} \right)\) là
\(\overrightarrow {{n_{\left( {ABC} \right)}}} = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {5.1 - \left( { - 1} \right).\left( { - 1} \right);\left( { - 1} \right).0 - \left( { - 4} \right).1;\left( { - 4} \right).\left( { - 1} \right) - 5.0} \right) = \left( {4;4;4} \right).\)
Vậy phương trình mặt phẳng \(\left( {ABC} \right)\) là
\(4\left( {x - 4} \right) + 4\left( {y - 0} \right) + 4\left( {z - 2} \right) = 0 \Leftrightarrow x + y + z - 6 = 0\)
Mặt phẳng \(\left( {ABD} \right)\) đi qua ba điểm \(A\left( {4;0;2} \right)\), \(B\left( {0;5;1} \right)\), \(D\left( {3; - 1;5} \right)\) nên sẽ nhận \(\overrightarrow {AB} \left( { - 4;5; - 1} \right)\) và \(\overrightarrow {AD} \left( { - 1; - 1;3} \right)\) làm một cặp vectơ chỉ phương. Suy ra một vectơ pháp tuyến của mặt phẳng \(\left( {ABD} \right)\) là
\(\overrightarrow {{n_{\left( {ABD} \right)}}} = \left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right] = \left( {5.3 - \left( { - 1} \right).\left( { - 1} \right);\left( { - 1} \right).\left( { - 1} \right) - \left( { - 4} \right).3;\left( { - 4} \right).\left( { - 1} \right) - 5.\left( { - 1} \right)} \right) = \left( {14;13;9} \right)\)
Vậy phương trình mặt phẳng \(\left( {ABD} \right)\) là:
\(14\left( {x - 4} \right) + 13\left( {y - 0} \right) + 9\left( {z - 2} \right) = 0 \Leftrightarrow 14x + 13y + 9z - 74 = 0.\)
b) Mặt phẳng \(\left( P \right)\) đi qua cạnh \(BC\) và song song với cạnh \(AD\), và do \(ABCD\) là tứ diện nên \(\overrightarrow {BC} \left( {4; - 6;2} \right)\) và \(\overrightarrow {AD} \left( { - 1; - 1;3} \right)\) là một cặp vectơ chỉ phương của \(\left( P \right)\). Suy ra một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) là
\(\overrightarrow {{n_{\left( P \right)}}} = \left[ {\overrightarrow {BC} ,\overrightarrow {AD} } \right] = \left( {\left( { - 6} \right).3 - 2.\left( { - 1} \right);2.\left( { - 1} \right) - 4.3;4.\left( { - 1} \right) - \left( { - 6} \right).\left( { - 1} \right)} \right) = \left( { - 16; - 14; - 10} \right)\)
Vậy phương trình mặt phẳng \(\left( P \right)\) là
\( - 16\left( {x - 0} \right) - 14\left( {y - 5} \right) - 10\left( {z - 1} \right) = 0 \Leftrightarrow 8x + 7y + 5z - 40 = 0.\)
Bài tập 3 trang 42 SGK Toán 12 tập 2 chương trình Chân trời sáng tạo thuộc chủ đề về đạo hàm của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế, cụ thể là tìm đạo hàm của hàm số và phân tích các tính chất của đạo hàm.
Bài tập 3 bao gồm các câu hỏi nhỏ, yêu cầu học sinh:
Cho hàm số f(x) = x3 - 3x2 + 2. Tính f'(x).
Lời giải:
Áp dụng công thức đạo hàm của hàm số đa thức, ta có:
f'(x) = 3x2 - 6x
Cho hàm số g(x) = sin(2x). Tính g'(x).
Lời giải:
Áp dụng công thức đạo hàm của hàm số lượng giác, ta có:
g'(x) = 2cos(2x)
Cho hàm số h(x) = ex + ln(x). Tính h'(x).
Lời giải:
Áp dụng công thức đạo hàm của hàm số mũ và logarit, ta có:
h'(x) = ex + 1/x
Đạo hàm là một công cụ quan trọng trong toán học, có nhiều ứng dụng trong việc giải quyết các bài toán thực tế. Trong bài tập 3 trang 42 SGK Toán 12 tập 2, đạo hàm được sử dụng để:
Để giải tốt các bài tập về đạo hàm, bạn nên:
Ví dụ: Tìm khoảng đồng biến của hàm số f(x) = x2 - 4x + 3.
Lời giải:
Tính đạo hàm f'(x) = 2x - 4.
Giải bất phương trình f'(x) > 0, ta được 2x - 4 > 0 => x > 2.
Vậy hàm số f(x) đồng biến trên khoảng (2, +∞).
Bài tập 3 trang 42 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, bạn sẽ tự tin hơn trong việc học tập môn Toán.
Hàm số | Đạo hàm |
---|---|
y = c (hằng số) | y' = 0 |
y = xn | y' = nxn-1 |
y = sin(x) | y' = cos(x) |
y = cos(x) | y' = -sin(x) |
y = ex | y' = ex |
y = ln(x) | y' = 1/x |