Logo Header
  1. Môn Toán
  2. Giải bài tập 8 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 8 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 8 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 8 trang 66 SGK Toán 12 tập 2 theo chương trình Chân trời sáng tạo.

Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và giúp bạn nắm vững kiến thức Toán học.

Cho đường thẳng \(d:\left\{ \begin{array}{l}x = - 1 + 2t\\y = - t\\z = - 2 - t\end{array} \right.\). Trong các đường thẳng sau, đường thẳng nào vuông góc với \(d\)? A. \({d_1}:\left\{ \begin{array}{l}x = 3t'\\y = 1 + t'\\z = 5t'\end{array} \right.\) B. \({d_2}:\left\{ \begin{array}{l}x = 2\\y = 2 + t'\\z = 1 + t'\end{array} \right.\) C. \({d_3}:\frac{{x - 2}}{3} = \frac{y}{2} = \frac{{z - 1}}{{ - 5}}\) D. \({d_4}:\frac{{x + 2}}{2} = \frac{y}{{ - 1}} = \frac{{z + 1}}{2}\)

Đề bài

Cho đường thẳng \(d:\left\{ \begin{array}{l}x = - 1 + 2t\\y = - t\\z = - 2 - t\end{array} \right.\). Trong các đường thẳng sau, đường thẳng nào vuông góc với \(d\)?

A. \({d_1}:\left\{ \begin{array}{l}x = 3t'\\y = 1 + t'\\z = 5t'\end{array} \right.\)

B. \({d_2}:\left\{ \begin{array}{l}x = 2\\y = 2 + t'\\z = 1 + t'\end{array} \right.\)

C. \({d_3}:\frac{{x - 2}}{3} = \frac{y}{2} = \frac{{z - 1}}{{ - 5}}\)

D. \({d_4}:\frac{{x + 2}}{2} = \frac{y}{{ - 1}} = \frac{{z + 1}}{2}\)

Phương pháp giải - Xem chi tiếtGiải bài tập 8 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo 1

Chỉ ra các vectơ chỉ phương \(\vec a\), \(\overrightarrow {{a_1}} \), \(\overrightarrow {{a_2}} \), \(\overrightarrow {{a_3}} \), \(\overrightarrow {{a_4}} \) lần lượt của \(d\), \({d_1}\), \({d_2}\), \({d_3}\), \({d_4}\).

Tính tích vô hướng của \(\vec a\) với lần lượt các vectơ \(\overrightarrow {{a_1}} \), \(\overrightarrow {{a_2}} \), \(\overrightarrow {{a_3}} \), \(\overrightarrow {{a_4}} \). Tích vô hướng nào bằng 0 thì hai đường thẳng tương ứng sẽ vuông góc với nhau.

Lời giải chi tiết

Các vectơ chỉ phương của các đường thẳng \(d\), \({d_1}\), \({d_2}\), \({d_3}\), \({d_4}\) lần lượt là \(\vec a = \left( {2; - 1; - 1} \right)\), \(\overrightarrow {{a_1}} = \left( {3;1;5} \right)\), \(\overrightarrow {{a_2}} = \left( {0;1;1} \right)\), \(\overrightarrow {{a_3}} = \left( {3;2; - 5} \right)\), \(\overrightarrow {{a_4}} = \left( {2; - 1;2} \right)\).

Ta có \(\vec a.\overrightarrow {{a_1}} = 2.3 + \left( { - 1} \right).1 + \left( { - 1} \right).5 = 0\), suy ra \(d \bot {d_1}\).

Ta có \(\vec a.\overrightarrow {{a_2}} = 2.0 + \left( { - 1} \right).1 + \left( { - 1} \right).1 = - 2 \ne 0\), suy ra \(d\) không vuông góc với \({d_2}\).

Ta có \(\vec a.\overrightarrow {{a_3}} = 2.3 + \left( { - 1} \right).2 + \left( { - 1} \right).\left( { - 5} \right) = 9 \ne 0\), suy ra \(d\) không vuông góc với \({d_3}\).

Ta có \(\vec a.\overrightarrow {{a_4}} = 2.2 + \left( { - 1} \right).\left( { - 1} \right) + \left( { - 1} \right).2 = 3 \ne 0\), suy ra \(d\) không vuông góc với \({d_4}\).

Vậy đáp án đúng là A.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 8 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo đặc sắc thuộc chuyên mục toán lớp 12 trên nền tảng toán math. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 8 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo: Tổng quan

Bài tập 8 trang 66 SGK Toán 12 tập 2 thuộc chương trình Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của đại lượng. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập 8 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo

Bài tập 8 thường bao gồm các dạng bài sau:

  • Dạng 1: Xác định vận tốc tức thời của một vật chuyển động.
  • Dạng 2: Tìm đạo hàm của hàm số hợp.
  • Dạng 3: Giải các bài toán tối ưu hóa liên quan đến đạo hàm.
  • Dạng 4: Phân tích sự biến thiên của hàm số dựa trên dấu của đạo hàm.

Lời giải chi tiết bài tập 8 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài tập 8. Chúng tôi sẽ sử dụng các công thức và quy tắc đạo hàm đã học để giải quyết các bài toán một cách chính xác và hiệu quả.

Ví dụ minh họa (Giả định một phần của bài tập 8)

Bài toán: Cho hàm số f(x) = x3 - 3x2 + 2. Tìm đạo hàm f'(x) và xác định các điểm cực trị của hàm số.

Lời giải:

  1. Tính đạo hàm f'(x):
  2. f'(x) = 3x2 - 6x

  3. Tìm điểm cực trị:
  4. Để tìm điểm cực trị, ta giải phương trình f'(x) = 0:

    3x2 - 6x = 0

    3x(x - 2) = 0

    Vậy, x = 0 hoặc x = 2

  5. Xác định loại cực trị:
  6. Ta xét dấu của f'(x) trên các khoảng:

    • Khoảng (-∞, 0): f'(x) > 0, hàm số đồng biến.
    • Khoảng (0, 2): f'(x) < 0, hàm số nghịch biến.
    • Khoảng (2, +∞): f'(x) > 0, hàm số đồng biến.

    Vậy, hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.

Mẹo giải bài tập đạo hàm hiệu quả

Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, chẳng hạn như:

  • Tính vận tốc và gia tốc của một vật chuyển động.
  • Tìm cực trị của hàm số để tối ưu hóa lợi nhuận hoặc chi phí.
  • Phân tích sự biến thiên của các hiện tượng kinh tế, xã hội.

Kết luận

Bài tập 8 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn khi giải quyết các bài toán tương tự.

Hãy tiếp tục luyện tập và khám phá thêm nhiều kiến thức Toán học thú vị tại giaitoan.edu.vn!

Tài liệu, đề thi và đáp án Toán 12