Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 6 trang 66 SGK Toán 12 tập 2 theo chương trình Chân trời sáng tạo.
Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và giúp bạn nắm vững kiến thức Toán học.
Cho đường thẳng \(d:\frac{{x - 2}}{{ - 1}} = \frac{{y - 1}}{2} = \frac{{z + 3}}{1}\). Vectơ nào sau đây là một vectơ chỉ phương của \(d\)? A. \(\overrightarrow {{u_1}} = \left( {2;1; - 3} \right)\) B. \(\overrightarrow {{u_2}} = \left( { - 2; - 1;3} \right)\) C. \(\overrightarrow {{u_3}} = \left( { - 1;2;1} \right)\) D. \(\overrightarrow {{u_4}} = \left( { - 1;2; - 1} \right)\)
Đề bài
Cho đường thẳng \(d:\frac{{x - 2}}{{ - 1}} = \frac{{y - 1}}{2} = \frac{{z + 3}}{1}\). Vectơ nào sau đây là một vectơ chỉ phương của \(d\)?
A. \(\overrightarrow {{u_1}} = \left( {2;1; - 3} \right)\)
B. \(\overrightarrow {{u_2}} = \left( { - 2; - 1;3} \right)\)
C. \(\overrightarrow {{u_3}} = \left( { - 1;2;1} \right)\)
D. \(\overrightarrow {{u_4}} = \left( { - 1;2; - 1} \right)\)
Phương pháp giải - Xem chi tiết
Dựa vào phương trình chính tắc, chỉ ra một vectơ chỉ phương của đường thẳng \(d\).
Lời giải chi tiết
Ta có phương trình của đường thẳng \(d:\frac{{x - 2}}{{ - 1}} = \frac{{y - 1}}{2} = \frac{{z + 3}}{1}\), nên đường thẳng \(d\) có một vectơ chỉ phương là \(\vec a = \left( { - 1;2;1} \right)\).
Vậy đáp án đúng là C.
Bài tập 6 trang 66 SGK Toán 12 tập 2 thuộc chương trình Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của đại lượng. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài tập 6 thường bao gồm các dạng bài sau:
Để giải quyết hiệu quả bài tập 6, bạn cần nắm vững các bước sau:
Bài toán: Một vật chuyển động theo phương trình s(t) = t3 - 3t2 + 5t + 2 (trong đó s tính bằng mét và t tính bằng giây). Tính vận tốc của vật tại thời điểm t = 2 giây.
Lời giải:
Vận tốc của vật tại thời điểm t được tính bằng đạo hàm của hàm vị trí s(t):
v(t) = s'(t) = 3t2 - 6t + 5
Thay t = 2 vào công thức trên, ta được:
v(2) = 3(2)2 - 6(2) + 5 = 12 - 12 + 5 = 5 (m/s)
Vậy vận tốc của vật tại thời điểm t = 2 giây là 5 m/s.
Khi giải bài tập về đạo hàm, bạn cần chú ý các điểm sau:
Ngoài SGK Toán 12 tập 2, bạn có thể tham khảo thêm các tài liệu sau để nâng cao kiến thức và kỹ năng giải bài tập:
Bài tập 6 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Hy vọng rằng với hướng dẫn chi tiết và các ví dụ minh họa trong bài viết này, bạn sẽ tự tin hơn khi đối mặt với bài tập này.