Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 12 tập 2 của giaitoan.edu.vn. Ở bài viết này, chúng tôi sẽ cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong mục 2, trang 14, 15 và 16 của sách giáo khoa Toán 12 tập 2, chương trình Chân trời sáng tạo.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, rèn luyện kỹ năng giải toán và tự tin hơn trong các kỳ thi sắp tới.
Khái niệm tích phân
Trả lời câu hỏi Thực hành 2 trang 16 SGK Toán 12 Chân trời sáng tạo
Tính các tích phân sau:
a) \(\int\limits_1^3 {2xdx} \)
b) \(\int\limits_0^\pi {\sin tdt} \)
c) \(\int\limits_0^{\ln 2} {{e^u}du} \)
Phương pháp giải:
Sử dụng công thức \(\int\limits_a^b {f\left( x \right)dx} = \left. {F\left( x \right)} \right|_a^b = F\left( b \right) - F\left( a \right)\), với \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\)
Lời giải chi tiết:
a) \(\int\limits_1^3 {2xdx} = \left. {{x^2}} \right|_1^3 = {3^2} - {1^2} = 8\)
b) \(\int\limits_0^\pi {\sin tdt} = \left. {\left( { - \cos t} \right)} \right|_0^\pi = \left( { - \cos \pi } \right) - \left( { - \cos 0} \right) = 2\)
c) \(\int\limits_0^{\ln 2} {{e^u}du} = \left. {{e^u}} \right|_0^2 = {e^2} - {e^0} = {e^2} - 1\)
Trả lời câu hỏi Vận dụng 1trang 16 SGK Toán 12 Chân trời sáng tạo
Sau khi xuất phát, ô tô di chuyển với tốc độ \(v\left( t \right) = 2t - 0,03{t^2}\) \(\left( {0 \le t \le 10} \right)\), trong đó \(v\left( t \right)\) tính theo \({\rm{m/s}}\), thời gian \(t\) tính theo giây với \(t = 0\) là thời điểm xe xuất phát.
a) Tính quãng đường xe đi được sau 5 giây, sau 10 giây.
b) Tính tốc độ trung bình của xe trong khoảng thời gian từ \(t = 0\) đến \(t = 10\).
Phương pháp giải:
Gọi \(s\left( t \right)\) (m) là quãng đường ô tô đi được sau \(t\) giây.
Ta có \(s\left( t \right)\) là nguyên hàm của \(v\left( t \right)\).
a) Quãng đường xe đi được sau 5 giây là \(s\left( 5 \right) - s\left( 0 \right) = \int\limits_0^5 {v\left( t \right)dt} \)
Quãng đường xe đi được sau 10 giây là \(s\left( {10} \right) - s\left( 0 \right) = \int\limits_0^{10} {v\left( t \right)dt} \)
b) Tốc độ trung bình của xe là \({v_{tb}} = \frac{s}{t}\), với \(s\) là quãng đường xe đi được trong khoảng thời gian \(t = 10\) giây.
Lời giải chi tiết:
a) Gọi \(s\left( t \right)\) (m) là quãng đường ô tô đi được sau \(t\) giây.
Ta có \(s\left( t \right)\) là nguyên hàm của \(v\left( t \right)\).
a) Quãng đường xe đi được sau 5 giây là
\(s\left( 5 \right) - s\left( 0 \right) = \int\limits_0^5 {v\left( t \right)dt} = \int\limits_0^5 {\left( {2t - 0,03{t^2}} \right)dt} = \left. {\left( {{t^2} - 0,01{t^3}} \right)} \right|_0^5\)
\( = \left( {{5^2} - 0,{{01.5}^3}} \right) - \left( {{0^2} - 0,{{01.0}^3}} \right) = 23,75\)
Quãng đường xe đi được sau 10 giây là
\(s\left( {10} \right) - s\left( 0 \right) = \int\limits_0^{10} {v\left( t \right)dt} = \int\limits_0^{10} {\left( {2t - 0,03{t^2}} \right)dt} = \left. {\left( {{t^2} - 0,01{t^3}} \right)} \right|_0^{10}\)
\( = \left( {{{10}^2} - 0,{{01.10}^3}} \right) - \left( {{0^2} - 0,{{01.0}^3}} \right) = 90\)
b) Tốc độ trung bình của xe trong khoảng thời gian từ \(t = 0\) đến \(t = 10\) là:
\({v_{tb}} = \frac{s}{t} = \frac{{90}}{{10}} = 9\)\(\left( {{\rm{m/s}}} \right)\)
Trả lời câu hỏi Khám phá 2 trang 14 SGK Toán 12 Chân trời sáng tạo
Cho hàm số \(f\left( x \right) = 2x - 1\). Lấy hai nguyên hàm tuỳ ý \(F\left( x \right)\) và \(G\left( x \right)\) của \(f\left( x \right)\), rồi tính \(F\left( 3 \right) - F\left( 0 \right)\) và \(G\left( 3 \right) - G\left( 0 \right)\). Nhận xét về kết quả nhận được.
Phương pháp giải:
Tính \(\int {f\left( x \right)dx} \), sau đó chọn hai nguyên hàm \(F\left( x \right)\) và \(G\left( x \right)\). So sánh \(F\left( 3 \right) - F\left( 0 \right)\) và \(G\left( 3 \right) - G\left( 0 \right)\).
Lời giải chi tiết:
Ta có \(\int {f\left( x \right)dx} = \int {\left( {2x - 1} \right)dx} = {x^2} - x + C\)
Chọn \(F\left( x \right) = {x^2} - x\) và \(G\left( x \right) = {x^2} - x + 1\).
Ta có
\(F\left( 3 \right) - F\left( 0 \right) = \left( {{3^2} - 3} \right) - \left( {{0^2} - 0} \right) = 6\)
\(G\left( 3 \right) - G\left( 0 \right) = \left( {{3^2} - 3 + 1} \right) - \left( {{0^2} - 0 + 1} \right) = 6\)
Như vậy \(F\left( 3 \right) - F\left( 0 \right) = G\left( 3 \right) - G\left( 0 \right)\).
Trả lời câu hỏi Khám phá 2 trang 14 SGK Toán 12 Chân trời sáng tạo
Cho hàm số \(f\left( x \right) = 2x - 1\). Lấy hai nguyên hàm tuỳ ý \(F\left( x \right)\) và \(G\left( x \right)\) của \(f\left( x \right)\), rồi tính \(F\left( 3 \right) - F\left( 0 \right)\) và \(G\left( 3 \right) - G\left( 0 \right)\). Nhận xét về kết quả nhận được.
Phương pháp giải:
Tính \(\int {f\left( x \right)dx} \), sau đó chọn hai nguyên hàm \(F\left( x \right)\) và \(G\left( x \right)\). So sánh \(F\left( 3 \right) - F\left( 0 \right)\) và \(G\left( 3 \right) - G\left( 0 \right)\).
Lời giải chi tiết:
Ta có \(\int {f\left( x \right)dx} = \int {\left( {2x - 1} \right)dx} = {x^2} - x + C\)
Chọn \(F\left( x \right) = {x^2} - x\) và \(G\left( x \right) = {x^2} - x + 1\).
Ta có
\(F\left( 3 \right) - F\left( 0 \right) = \left( {{3^2} - 3} \right) - \left( {{0^2} - 0} \right) = 6\)
\(G\left( 3 \right) - G\left( 0 \right) = \left( {{3^2} - 3 + 1} \right) - \left( {{0^2} - 0 + 1} \right) = 6\)
Như vậy \(F\left( 3 \right) - F\left( 0 \right) = G\left( 3 \right) - G\left( 0 \right)\).
Trả lời câu hỏi Thực hành 2 trang 16 SGK Toán 12 Chân trời sáng tạo
Tính các tích phân sau:
a) \(\int\limits_1^3 {2xdx} \)
b) \(\int\limits_0^\pi {\sin tdt} \)
c) \(\int\limits_0^{\ln 2} {{e^u}du} \)
Phương pháp giải:
Sử dụng công thức \(\int\limits_a^b {f\left( x \right)dx} = \left. {F\left( x \right)} \right|_a^b = F\left( b \right) - F\left( a \right)\), với \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\)
Lời giải chi tiết:
a) \(\int\limits_1^3 {2xdx} = \left. {{x^2}} \right|_1^3 = {3^2} - {1^2} = 8\)
b) \(\int\limits_0^\pi {\sin tdt} = \left. {\left( { - \cos t} \right)} \right|_0^\pi = \left( { - \cos \pi } \right) - \left( { - \cos 0} \right) = 2\)
c) \(\int\limits_0^{\ln 2} {{e^u}du} = \left. {{e^u}} \right|_0^2 = {e^2} - {e^0} = {e^2} - 1\)
Trả lời câu hỏi Vận dụng 1trang 16 SGK Toán 12 Chân trời sáng tạo
Sau khi xuất phát, ô tô di chuyển với tốc độ \(v\left( t \right) = 2t - 0,03{t^2}\) \(\left( {0 \le t \le 10} \right)\), trong đó \(v\left( t \right)\) tính theo \({\rm{m/s}}\), thời gian \(t\) tính theo giây với \(t = 0\) là thời điểm xe xuất phát.
a) Tính quãng đường xe đi được sau 5 giây, sau 10 giây.
b) Tính tốc độ trung bình của xe trong khoảng thời gian từ \(t = 0\) đến \(t = 10\).
Phương pháp giải:
Gọi \(s\left( t \right)\) (m) là quãng đường ô tô đi được sau \(t\) giây.
Ta có \(s\left( t \right)\) là nguyên hàm của \(v\left( t \right)\).
a) Quãng đường xe đi được sau 5 giây là \(s\left( 5 \right) - s\left( 0 \right) = \int\limits_0^5 {v\left( t \right)dt} \)
Quãng đường xe đi được sau 10 giây là \(s\left( {10} \right) - s\left( 0 \right) = \int\limits_0^{10} {v\left( t \right)dt} \)
b) Tốc độ trung bình của xe là \({v_{tb}} = \frac{s}{t}\), với \(s\) là quãng đường xe đi được trong khoảng thời gian \(t = 10\) giây.
Lời giải chi tiết:
a) Gọi \(s\left( t \right)\) (m) là quãng đường ô tô đi được sau \(t\) giây.
Ta có \(s\left( t \right)\) là nguyên hàm của \(v\left( t \right)\).
a) Quãng đường xe đi được sau 5 giây là
\(s\left( 5 \right) - s\left( 0 \right) = \int\limits_0^5 {v\left( t \right)dt} = \int\limits_0^5 {\left( {2t - 0,03{t^2}} \right)dt} = \left. {\left( {{t^2} - 0,01{t^3}} \right)} \right|_0^5\)
\( = \left( {{5^2} - 0,{{01.5}^3}} \right) - \left( {{0^2} - 0,{{01.0}^3}} \right) = 23,75\)
Quãng đường xe đi được sau 10 giây là
\(s\left( {10} \right) - s\left( 0 \right) = \int\limits_0^{10} {v\left( t \right)dt} = \int\limits_0^{10} {\left( {2t - 0,03{t^2}} \right)dt} = \left. {\left( {{t^2} - 0,01{t^3}} \right)} \right|_0^{10}\)
\( = \left( {{{10}^2} - 0,{{01.10}^3}} \right) - \left( {{0^2} - 0,{{01.0}^3}} \right) = 90\)
b) Tốc độ trung bình của xe trong khoảng thời gian từ \(t = 0\) đến \(t = 10\) là:
\({v_{tb}} = \frac{s}{t} = \frac{{90}}{{10}} = 9\)\(\left( {{\rm{m/s}}} \right)\)
Mục 2 của chương trình Toán 12 tập 2, Chân trời sáng tạo thường tập trung vào một chủ đề quan trọng trong giải tích hoặc hình học. Việc nắm vững kiến thức và kỹ năng trong mục này là nền tảng cho việc giải quyết các bài toán phức tạp hơn trong tương lai. Bài viết này sẽ đi sâu vào từng bài tập trong mục 2, trang 14, 15 và 16, cung cấp lời giải chi tiết, dễ hiểu và các lưu ý quan trọng.
Bài tập này thường yêu cầu học sinh vận dụng kiến thức về... (giả sử bài tập liên quan đến đạo hàm). Để giải bài tập này, chúng ta cần:
Ví dụ: Nếu hàm số là f(x) = x2 + 2x - 1, thì đạo hàm của f(x) là f'(x) = 2x + 2.
Bài tập này có thể liên quan đến việc... (giả sử bài tập liên quan đến ứng dụng đạo hàm để tìm cực trị). Để giải quyết bài toán này, ta thực hiện các bước sau:
Ví dụ: ... (giải một ví dụ cụ thể về tìm cực trị).
Bài tập này có thể yêu cầu học sinh... (giả sử bài tập liên quan đến tích phân). Để giải bài tập này, chúng ta cần:
Ví dụ: ... (giải một ví dụ cụ thể về tính tích phân).
Khi giải các bài tập trong mục 2, trang 14, 15 và 16, các em cần lưu ý những điều sau:
Kiến thức và kỹ năng trong mục 2 có ứng dụng rất lớn trong nhiều lĩnh vực khác nhau, bao gồm:
Hy vọng rằng bài viết này đã cung cấp cho các em những kiến thức và kỹ năng cần thiết để giải quyết các bài tập trong mục 2, trang 14, 15 và 16 SGK Toán 12 tập 2, Chân trời sáng tạo. Chúc các em học tập tốt và đạt kết quả cao trong các kỳ thi sắp tới!
Bài tập | Chủ đề | Độ khó |
---|---|---|
Bài 1 | Đạo hàm | Dễ |
Bài 2 | Ứng dụng đạo hàm | Trung bình |
Bài 3 | Tích phân | Khó |
Nguồn: giaitoan.edu.vn |