Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 19 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.
Một chất điểm đang chuyển động với tốc độ ({v_0} = 1{rm{ }}left( {{rm{m/s}}} right)) thì tăng tốc với gia tốc không đổi (a = 3{rm{ m/}}{{rm{s}}^2}). Hỏi tốc độ của chất điểm là bao nhiêu sau 10 giây kể từ khi bắt đầu tăng tốc?
Đề bài
Một chất điểm đang chuyển động với tốc độ \({v_0} = 1{\rm{ }}\left( {{\rm{m/s}}} \right)\) thì tăng tốc với gia tốc không đổi \(a = 3{\rm{ m/}}{{\rm{s}}^2}\). Hỏi tốc độ của chất điểm là bao nhiêu sau 10 giây kể từ khi bắt đầu tăng tốc?
Phương pháp giải - Xem chi tiết
Vận tốc của chất điểm sau 10 giây là \(v\left( {10} \right) = v\left( {10} \right) - v\left( 0 \right) + v\left( 0 \right) = \int\limits_0^{10} {adt} + v\left( 0 \right)\)
Lời giải chi tiết
Vận tốc của chất điểm sau 10 giây là
\(v\left( {10} \right) = v\left( {10} \right) - v\left( 0 \right) + v\left( 0 \right) = \int\limits_0^{10} {adt} + v\left( 0 \right) = \int\limits_0^{10} {3dt} + {v_0} = 3\left. {\left( t \right)} \right|_0^{10} + 1 = 31\) (m/s).
Bài tập 19 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức và quy tắc đạo hàm là yếu tố then chốt để hoàn thành bài tập này một cách chính xác.
Bài tập 19 thường xoay quanh việc tính đạo hàm của các hàm số lượng giác, hàm số mũ, hàm số logarit và các hàm hợp. Đôi khi, bài tập còn yêu cầu học sinh tìm đạo hàm cấp hai hoặc đạo hàm của hàm ẩn.
Ví dụ: Tính đạo hàm của hàm số y = sin(2x) + ex.
Giải:
Bài tập 19 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Bằng cách nắm vững các công thức, quy tắc và phương pháp giải, bạn có thể tự tin giải quyết bài tập này một cách hiệu quả. Chúc bạn học tập tốt!