Chào mừng các em học sinh đến với lời giải chi tiết bài tập 18 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo. Bài viết này sẽ cung cấp phương pháp giải và đáp án chính xác, giúp các em hiểu rõ kiến thức và tự tin làm bài tập.
Giaitoan.edu.vn là nền tảng học toán online uy tín, cung cấp đầy đủ các tài liệu học tập, bài giảng và bài tập giải chi tiết cho học sinh THPT.
Cho ba điểm \(A\left( {1;0;0} \right)\), \(B\left( {0;2;0} \right)\) và \(C\left( {0;0;3} \right)\). Chứng minh rằng nếu điểm \(M\left( {x,y,z} \right)\) thoả mãn \(M{A^2} = M{B^2} + M{C^2}\) thì \(M\) thuộc một mặt cầu \(\left( S \right)\). Tìm tâm và bán kính của \(\left( S \right)\).
Đề bài
Cho ba điểm \(A\left( {1;0;0} \right)\), \(B\left( {0;2;0} \right)\) và \(C\left( {0;0;3} \right)\). Chứng minh rằng nếu điểm \(M\left( {x,y,z} \right)\) thoả mãn \(M{A^2} = M{B^2} + M{C^2}\) thì \(M\) thuộc một mặt cầu \(\left( S \right)\). Tìm tâm và bán kính của \(\left( S \right)\).
Phương pháp giải - Xem chi tiết
Tính độ dài \(MA\), \(MB\) và \(MC\) theo \(x\), \(y\), \(z\), sau đó thay vào đẳng thức \(M{A^2} = M{B^2} + M{C^2}\) và rút ra kết luận.
Lời giải chi tiết
Ta có
\(M{A^2} = {\left( {x - 1} \right)^2} + {y^2} + {z^2}\), \(M{B^2} = {x^2} + {\left( {y - 2} \right)^2} + {z^2}\), \(M{C^2} = {x^2} + {y^2} + {\left( {z - 3} \right)^2}\)
Do \(M{A^2} = M{B^2} + M{C^2}\), nên
\({\left( {x - 1} \right)^2} + {y^2} + {z^2} = {x^2} + {\left( {y - 2} \right)^2} + {z^2} + {x^2} + {y^2} + {\left( {z - 3} \right)^2}\)
\( \Rightarrow - 2x + 1 = {x^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2}\)
\( \Rightarrow {x^2} + 2x - 1 + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 0\)
\( \Rightarrow {\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 2\).
Vậy điểm \(M\) thuộc mặt cầu có tâm \(I\left( { - 1;2;3} \right)\) và bán kính \(R = \sqrt 2 .\)
Bài tập 18 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo thuộc chương trình học về Đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số lượng giác, hàm hợp và các hàm số đặc biệt khác. Việc nắm vững kiến thức lý thuyết và kỹ năng tính toán là yếu tố then chốt để giải quyết bài tập này một cách hiệu quả.
Bài tập 18 thường bao gồm các câu hỏi yêu cầu học sinh:
Để giải quyết bài tập 18 một cách hiệu quả, học sinh cần:
Ví dụ: Tính đạo hàm của hàm số y = sin2(x).
Giải:
Áp dụng quy tắc chuỗi, ta có:
y' = 2sin(x) * cos(x) = sin(2x)
Để củng cố kiến thức và kỹ năng, học sinh có thể giải các bài tập tương tự sau:
Bài tập 18 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm và vận dụng kiến thức lý thuyết vào thực tế. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, các em học sinh sẽ tự tin giải quyết bài tập này một cách hiệu quả. Chúc các em học tập tốt!