Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 1 - Chân trời sáng tạo. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài tập 2 trang 18, từ đó nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tiết kiệm thời gian và đạt kết quả tốt nhất.
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) (y = {x^3} - 12x + 1) trên đoạn [-1;3] b) (y = - {x^3} + 24{x^2} - 180x + 400) trên đoạn [3;11] c) (y = frac{{2x + 1}}{{x - 2}}) trên đoạn [3;7] d) (y = sin 2x) trên đoạn ([0;frac{{7pi }}{{12}}])
Đề bài
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:a) \(y = {x^3} - 12x + 1\) trên đoạn [-1;3] b) \(y = - {x^3} + 24{x^2} - 180x + 400\) trên đoạn [3;11]c) \(y = \frac{{2x + 1}}{{x - 2}}\) trên đoạn [3;7] d) \(y = \sin 2x\) trên đoạn \([0;\frac{{7\pi }}{{12}}]\)
Phương pháp giải - Xem chi tiết
Tìm đạo hàm, lập bảng biến thiên và xác định giá trị lớn nhất, giá trị nhỏ nhất của hàm số
Lời giải chi tiết
a) Xét \(y = {x^3} - 12x + 1\) trên đoạn [-1;3]
\(y' = 3{x^2} - 12 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 2(loai)\end{array} \right.\)
Bảng biến thiên:
Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_{[ - 1;3]} y = y( - 1) = 12\) và \(\mathop {\min }\limits_{[ - 1;3]} y = y(2) = - 15\)
b) Xét \(y = - {x^3} + 24{x^2} - 180x + 400\) trên đoạn [3;11]
\(y' = - 3{x^2} + 48x - 180 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 10\\x = 6\end{array} \right.\)
Bảng biến thiên:
Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_{[3;11]} y = y(3) = 49\) và \(\mathop {\min }\limits_{[3;11]} y = y(6) = - 32\)
c) Xét \(y = \frac{{2x + 1}}{{x - 2}}\) trên đoạn [3;7]
\(y' = \frac{{ - 5}}{{{{(x - 2)}^2}}} < 0\forall x \in [3;7]\)
Bảng biến thiên:
Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_{[3;7]} y = y(3) = 7\) và \(\mathop {\min }\limits_{[3;7]} y = y(7) = 3\)
d) Xét \(y = \sin 2x\) trên đoạn \([0;\frac{{7\pi }}{{12}}]\)
\(y' = 2\cos 2x = 0 \Leftrightarrow 2x = \frac{\pi }{2} + k\pi \Leftrightarrow x = \frac{\pi }{4} + \frac{{k\pi }}{2}(k \in \mathbb{Z})\)
Ta có: \(x \in [0;\frac{{7\pi }}{{12}}] \Rightarrow k = 0 \Rightarrow x = \frac{\pi }{4}\)
Bảng biến thiên:
Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_{[0;\frac{{7\pi }}{{12}}]} y = y(\frac{\pi }{4}) = 1\) và \(\mathop {\min }\limits_{[0;\frac{{7\pi }}{{12}}]} y = y(\frac{{7\pi }}{{12}}) = - \frac{1}{2}\)
Bài tập 2 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về định nghĩa giới hạn để tính giới hạn của hàm số tại một điểm. Việc nắm vững kiến thức này là nền tảng quan trọng để học các kiến thức nâng cao hơn về giới hạn và đạo hàm trong chương trình Toán 12.
Bài tập 2 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh tính giới hạn của các hàm số khác nhau. Các hàm số này có thể là hàm đa thức, hàm phân thức, hoặc các hàm số khác. Để giải bài tập này, học sinh cần:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài tập 2 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo:
Để tính giới hạn này, ta có thể thay trực tiếp x = 2 vào biểu thức:
limx→2 (x2 - 3x + 2) = 22 - 3*2 + 2 = 4 - 6 + 2 = 0
Tương tự như câu a, ta thay x = -1 vào biểu thức:
limx→-1 (x3 + 1) = (-1)3 + 1 = -1 + 1 = 0
Thay x = 0 vào biểu thức:
limx→0 (x2 + 2x + 1) = 02 + 2*0 + 1 = 0 + 0 + 1 = 1
Ngoài bài tập 2, còn rất nhiều bài tập tương tự về giới hạn hàm số. Để giải các bài tập này, bạn có thể áp dụng các phương pháp sau:
Khi giải bài tập về giới hạn hàm số, bạn cần lưu ý những điều sau:
Kiến thức về giới hạn hàm số có ứng dụng rất lớn trong nhiều lĩnh vực của Toán học và các ngành khoa học khác. Ví dụ, giới hạn hàm số được sử dụng để tính đạo hàm, tích phân, và giải các bài toán về tối ưu hóa.
Bài tập 2 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo là một bài tập cơ bản về giới hạn hàm số. Việc giải bài tập này giúp bạn nắm vững kiến thức nền tảng và chuẩn bị cho các bài học tiếp theo. Hy vọng rằng với lời giải chi tiết và các phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin hơn trong quá trình học tập môn Toán 12.