Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 1 - Chân trời sáng tạo. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài tập 1 trang 24, từ đó nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tiết kiệm thời gian và đạt kết quả tốt nhất.
Tìm các tiệm cận đứng và tiệm cận ngang của đồ thị hàm số sau: a) (y = frac{{4x - 5}}{{2x - 3}}) b) (y = frac{{ - 2x + 7}}{{4x - 3}}) c) (y = frac{{5x}}{{3x - 7}})
Đề bài
Tìm các tiệm cận đứng và tiệm cận ngang của đồ thị hàm số sau:
a) \(y = \frac{{4x - 5}}{{2x - 3}}\)
b) \(y = \frac{{ - 2x + 7}}{{4x - 3}}\)
c) \(y = \frac{{5x}}{{3x - 7}}\)
Phương pháp giải - Xem chi tiết
- Đường thẳng x = a được gọi là một đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau thoả mãn: \(\mathop {\lim f(x) = }\limits_{x \to {a^ - }} + \infty ,\mathop {\lim f(x) = }\limits_{x \to {a^ + }} + \infty ,\mathop {\lim f(x) = }\limits_{x \to {a^ - }} - \infty ,\mathop {\lim f(x) = }\limits_{x \to {a^ + }} - \infty \)
- Đường thẳng y = m được gọi là một đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to - \infty } f(x) = m\) hoặc \(\mathop {\lim }\limits_{x \to + \infty } f(x) = m\)
Lời giải chi tiết
a) Xét \(y = \frac{{4x - 5}}{{2x - 3}}\)
Tập xác định: \(D = \mathbb{R}\backslash \left\{ {\frac{3}{2}} \right\}\)
Ta có: \(\mathop {\lim }\limits_{x \to {{\frac{3}{2}}^ + }} y = \mathop {\lim }\limits_{x \to {{\frac{3}{2}}^ + }} \frac{{4x - 5}}{{2x - 3}} = + \infty \); \(\mathop {\lim }\limits_{x \to {{\frac{3}{2}}^ - }} y = \mathop {\lim }\limits_{x \to {{\frac{3}{2}}^ - }} \frac{{4x - 5}}{{2x - 3}} = - \infty \)
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{4x - 5}}{{2x - 3}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{4 - \frac{5}{x}}}{{2 - \frac{3}{x}}} = 2\); \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{4x - 5}}{{2x - 3}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{4 - \frac{5}{x}}}{{2 - \frac{3}{x}}} = 2\)
Vậy đường thẳng x = \(\frac{3}{2}\) và y = 2 lần lượt là tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
b) Xét \(y = \frac{{ - 2x + 7}}{{4x - 3}}\)
Tập xác định: \(D = \mathbb{R}\backslash \left\{ {\frac{3}{4}} \right\}\)
Ta có: \(\mathop {\lim }\limits_{x \to {{\frac{3}{4}}^ + }} y = \mathop {\lim }\limits_{x \to {{\frac{3}{4}}^ + }} \frac{{ - 2x + 7}}{{4x - 3}} = + \infty \); \(\mathop {\lim }\limits_{x \to {{\frac{3}{4}}^ - }} y = \mathop {\lim }\limits_{x \to {{\frac{3}{4}}^ - }} \frac{{ - 2x + 7}}{{4x - 3}} = - \infty \)
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2x + 7}}{{4x - 3}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2 + \frac{7}{x}}}{{4 - \frac{3}{x}}} = - \frac{1}{2}\); \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - 2x + 7}}{{4x - 3}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - 2 + \frac{7}{x}}}{{4 - \frac{3}{x}}} = - \frac{1}{2}\)
Vậy đường thẳng x = \(\frac{3}{4}\) và y = \( - \frac{1}{2}\) lần lượt là tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
c) Xét \(y = \frac{{5x}}{{3x - 7}}\)
Tập xác định: \(D = \mathbb{R}\backslash \left\{ {\frac{7}{3}} \right\}\)
Ta có: \(\mathop {\lim }\limits_{x \to {{\frac{7}{3}}^ + }} y = \mathop {\lim }\limits_{x \to {{\frac{7}{3}}^ + }} \frac{{5x}}{{3x - 7}} = + \infty \); \(\mathop {\lim }\limits_{x \to {{\frac{7}{3}}^ - }} y = \mathop {\lim }\limits_{x \to {{\frac{7}{3}}^ - }} \frac{{5x}}{{3x - 7}} = - \infty \)
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{5x}}{{3x - 7}} = \mathop {\lim }\limits_{x \to + \infty } \frac{5}{{3 - \frac{7}{x}}} = \frac{5}{3}\); \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{5x}}{{3x - 7}} = \mathop {\lim }\limits_{x \to - \infty } \frac{5}{{3 - \frac{7}{x}}} = \frac{5}{3}\)
Vậy đường thẳng x = \(\frac{7}{3}\) và y = \(\frac{5}{3}\) lần lượt là tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
Bài tập 1 trang 24 SGK Toán 12 tập 1 - Chân trời sáng tạo thuộc chương trình học về giới hạn của hàm số. Đây là một phần kiến thức nền tảng quan trọng, giúp học sinh làm quen với các khái niệm cơ bản về giới hạn và ứng dụng trong việc giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh vận dụng kiến thức về định nghĩa giới hạn, các tính chất của giới hạn và các phương pháp tính giới hạn để tìm ra đáp án chính xác.
Bài tập 1 trang 24 thường bao gồm các dạng bài tập sau:
Để giải quyết bài tập 1 trang 24 một cách hiệu quả, học sinh cần nắm vững các phương pháp sau:
Dưới đây là lời giải chi tiết cho từng bài tập trong bài tập 1 trang 24 SGK Toán 12 tập 1 - Chân trời sáng tạo:
Đề bài: Tính giới hạn lim (x→2) (x^2 - 4) / (x - 2)
Lời giải:
lim (x→2) (x^2 - 4) / (x - 2) = lim (x→2) (x - 2)(x + 2) / (x - 2) = lim (x→2) (x + 2) = 2 + 2 = 4
Đề bài: Tính giới hạn lim (x→-1) (x^3 + 1) / (x + 1)
Lời giải:
lim (x→-1) (x^3 + 1) / (x + 1) = lim (x→-1) (x + 1)(x^2 - x + 1) / (x + 1) = lim (x→-1) (x^2 - x + 1) = (-1)^2 - (-1) + 1 = 1 + 1 + 1 = 3
Đề bài: Tính giới hạn lim (x→0) sin(x) / x
Lời giải:
lim (x→0) sin(x) / x = 1 (Đây là giới hạn lượng giác cơ bản)
Bài tập 1 trang 24 SGK Toán 12 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về giới hạn của hàm số. Hy vọng với lời giải chi tiết và các phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin hơn trong việc giải quyết các bài toán tương tự.