Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 1 - Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải quyết bài tập 6 trang 37 một cách hiệu quả.
Chúng tôi cam kết mang đến cho bạn trải nghiệm học toán online tốt nhất với đội ngũ giáo viên giàu kinh nghiệm và phương pháp giảng dạy tiên tiến.
Tiệm cận xiên của đồ thị hàm số (y = frac{{2{x^3} + 3{x^2} - 3}}{{{x^2} - 1}}) là đường thẳng có phương trình A. (y = 2x + 3) B. (y = x + 3) C. (y = 2x + 1) D. (y = x + 1)
Đề bài
Tiệm cận xiên của đồ thị hàm số \(y = \frac{{2{x^3} + 3{x^2} - 3}}{{{x^2} - 1}}\) là đường thẳng có phương trình
A. \(y = 2x + 3\) B. \(y = x + 3\) C. \(y = 2x + 1\) D. \(y = x + 1\)
Phương pháp giải - Xem chi tiết
Đường thẳng y = ax + b, a ≠ 0, được gọi là đường tiệm cận xiên (hay tiệm cận xiên) của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to - \infty } [f(x) - (ax + b)] = 0\) hoặc \(\mathop {\lim }\limits_{x \to + \infty } [f(x) - (ax + b)] = 0\)
Lời giải chi tiết
Chọn A
Tập xác định: \(D = \mathbb{R}\backslash \{ - 1;1\} \)
Ta có: \(a = \mathop {\lim }\limits_{x \to + \infty } \frac{y}{x} = \mathop {\lim }\limits_{x \to + \infty } = \frac{{2{x^3} + 3{x^2} - 3}}{{{x^3} - x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{2{x^3} + 3{x^2} - 3}}{{{x^3} - x}} = 2\)
\(b = \mathop {\lim }\limits_{x \to + \infty } (y - ax) = \mathop {\lim }\limits_{x \to + \infty } (\frac{{2{x^3} + 3{x^2} - 3}}{{{x^2} - 1}} - 2x) = 3\)
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } [y - (ax + b)] = \mathop {\lim }\limits_{x \to + \infty } [\frac{{2{x^3} + 3{x^2} - 3}}{{{x^2} - 1}} - (2x + 3)] = 0\)
Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng y = 2x + 3
Bài tập 6 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn một bên, giới hạn tại một điểm và các tính chất của giới hạn để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là rất quan trọng để đạt kết quả tốt trong các kỳ thi sắp tới.
Bài tập 6 thường bao gồm các dạng bài sau:
Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài tập 6 trang 37, chúng tôi xin trình bày lời giải chi tiết cho từng câu hỏi:
Đề bài: Tính limx→2 (x2 - 4) / (x - 2)
Lời giải:
Đề bài: Tính limx→-1 (x3 + 1) / (x + 1)
Lời giải:
Để giải quyết các bài tập về giới hạn một cách hiệu quả, bạn có thể tham khảo một số mẹo sau:
Ngoài SGK Toán 12 tập 1 - Chân trời sáng tạo, bạn có thể tham khảo thêm các tài liệu sau:
Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập được trình bày trong bài viết này, các bạn học sinh sẽ tự tin hơn khi giải quyết bài tập 6 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo. Chúc các bạn học tập tốt!