Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 1 - Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn giải bài tập 4 trang 64 một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.
Cho điểm M(1; 2; 3). Hãy tìm toạ độ của các điểm: a) ({M_1},{M_2},{M_3}) lần lượt là hình chiếu vuông góc của M trên các mặt phẳng toạ độ (Oxy), (Oyz), (Oxz). b) M′, M″, M′′′ lần lượt là điểm đối xứng của M qua O, mặt phẳng (Oxy) và trục Oy.
Đề bài
Cho điểm M(1; 2; 3). Hãy tìm toạ độ của các điểm:
a) \({M_1},{M_2},{M_3}\) lần lượt là hình chiếu vuông góc của M trên các mặt phẳng toạ độ (Oxy), (Oyz), (Oxz).
b) M′, M″, M′′′ lần lượt là điểm đối xứng của M qua O, mặt phẳng (Oxy) và trục Oy.
Phương pháp giải - Xem chi tiết
a) Có \(A({a_1};{a_2};{a_3})\). Tọa độ của hình chiếu của A lên (Oxy) là \(({a_1};{a_2};0)\), lên (Oyz) là \((0;{a_2};{a_3})\), lên (Oxz) là \(({a_1};0;{a_3})\).
b) Áp dụng công thức tìm tọa độ trung điểm.
Lời giải chi tiết
a) \({M_1}(1;2;0),{M_2}(0;2;3),{M_3}(1;0;3)\).
b)
+) Vì O là trung điểm của MM’ nên
\(\left\{ {\begin{array}{*{20}{c}}{{x_{M'}} = 2{x_O} - {x_M}}\\{{y_{M'}} = 2{y_O} - {y_M}}\\{{z_{M'}} = 2{z_O} - {z_M}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_{M'}} = 2.0 - 1}\\{{y_{M'}} = 2.0 - 2}\\{{z_{M'}} = 2.0 - 3}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_{M'}} = - 1}\\{{y_{M'}} = - 2}\\{{z_{M'}} = - 3}\end{array}} \right.\)
Vậy M’(-1;-2;-3).
+) Vì M’’ đối xứng với M qua mặt phẳng Oxy nên \({M_1}\) là trung điểm của MM’’. Khi đó
\(\left\{ {\begin{array}{*{20}{c}}{{x_{M''}} = 2{x_{{M_1}}} - {x_M}}\\{{y_{M''}} = 2{y_{{M_1}}} - {y_M}}\\{{z_{M''}} = 2{z_{{M_1}}} - {z_M}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_{M''}} = 2.1 - 1}\\{{y_{M''}} = 2.2 - 2}\\{{z_{M''}} = 2.0 - 3}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_{M''}} = 1}\\{{y_{M''}} = 2}\\{{z_{M''}} = - 3}\end{array}} \right.\)
Vậy M’’(1;2;-3).
+) K là hình chiếu của M trên Oy nên K(0;2;0).
Vì K là trung điểm của MM’’’ nên
\(\left\{ {\begin{array}{*{20}{c}}{{x_{M'''}} = 2{x_K} - {x_M}}\\{{y_{M'''}} = 2{y_K} - {y_M}}\\{{z_{M'''}} = 2{z_K} - {z_M}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_{M''}} = 2.0 - 1}\\{{y_{M''}} = 2.2 - 2}\\{{z_{M''}} = 2.0 - 3}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_{M''}} = - 1}\\{{y_{M''}} = 2}\\{{z_{M''}} = - 3}\end{array}} \right.\)
Vậy M’’’(-1;2;-3).
Bài tập 4 trang 64 SGK Toán 12 tập 1 - Chân trời sáng tạo thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn một bên, giới hạn tại một điểm và các tính chất của giới hạn để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là rất quan trọng để học tốt môn Toán 12.
Bài tập 4 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh tính giới hạn của hàm số tại một điểm cho trước. Các hàm số có thể là hàm đa thức, hàm hữu tỉ, hoặc các hàm số khác. Để giải bài tập này, học sinh cần:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài tập 4 trang 64 SGK Toán 12 tập 1 - Chân trời sáng tạo:
Để giải câu a, ta cần tính giới hạn của hàm số f(x) khi x tiến tới một giá trị cụ thể. Ta có thể sử dụng định nghĩa giới hạn hoặc các quy tắc tính giới hạn để tìm ra kết quả.
Ví dụ:
lim (x->2) (x^2 - 4) / (x - 2) = lim (x->2) (x + 2) = 4
Tương tự như câu a, ta cần xác định dạng của hàm số và áp dụng các quy tắc tính giới hạn phù hợp. Nếu hàm số có dạng vô định, ta cần sử dụng các phương pháp khử mẫu hoặc biến đổi đại số để tìm ra giới hạn.
Đối với các hàm số phức tạp hơn, ta có thể cần sử dụng các định lý giới hạn hoặc các kỹ thuật khác để giải quyết bài toán.
Ngoài bài tập 4 trang 64, còn rất nhiều bài tập tương tự về giới hạn hàm số trong SGK Toán 12 tập 1 - Chân trời sáng tạo. Để luyện tập và nâng cao kỹ năng giải bài tập, bạn có thể tham khảo các bài tập sau:
Để giải bài tập về giới hạn hàm số một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:
Giới hạn hàm số là một khái niệm quan trọng trong toán học, có nhiều ứng dụng trong các lĩnh vực khác nhau như vật lý, kinh tế, và khoa học máy tính. Ví dụ, giới hạn hàm số được sử dụng để tính đạo hàm, tích phân, và các khái niệm khác trong giải tích.
Bài tập 4 trang 64 SGK Toán 12 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về giới hạn hàm số. Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập được cung cấp trong bài viết này, bạn sẽ có thể giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!