Logo Header
  1. Môn Toán
  2. Giải bài tập 2 trang 59 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 2 trang 59 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 2 trang 59 SGK Toán 12 tập 2 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 2 trang 59 SGK Toán 12 tập 2 theo chương trình Chân trời sáng tạo.

Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và giúp bạn nắm vững kiến thức Toán học.

Viết phương trình chính tắc của đường thẳng (b) trong mỗi trường hợp sau: a) Đường thẳng (b) đi qua điểm (Mleft( {1; - 2; - 3} right)) và có vectơ chỉ phương (vec a = left( {5; - 3;2} right)). b) Đường thẳng (b) đi qua hai điểm (Aleft( {4;7;1} right)) và (Bleft( {6;1;5} right)).

Đề bài

Viết phương trình chính tắc của đường thẳng \(b\) trong mỗi trường hợp sau:

a) Đường thẳng \(b\) đi qua điểm \(M\left( {1; - 2; - 3} \right)\) và có vectơ chỉ phương \(\vec a = \left( {5; - 3;2} \right)\).

b) Đường thẳng \(b\) đi qua hai điểm \(A\left( {4;7;1} \right)\) và \(B\left( {6;1;5} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài tập 2 trang 59 SGK Toán 12 tập 2 - Chân trời sáng tạo 1

a) Phương trình chính tắc của đường thẳng \(b\) đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\vec a = \left( {{a_1};{a_2};{a_3}} \right)\) là \(\frac{{x - {x_0}}}{{{a_1}}} = \frac{{y - {y_0}}}{{{a_2}}} = \frac{{z - {z_0}}}{{{a_3}}}\).

b) Đường thẳng \(b\) đi qua hai điểm \(A\) và \(B\) nên sẽ nhận \(\overrightarrow {AB} \) là một vectơ chỉ phương. Từ đó viết phương trình đường thẳng \(b\) đi qua điểm \(A\) và có vectơ chỉ phương là \(\overrightarrow {AB} \).

Lời giải chi tiết

a) Phương trình chính tắc của đường thẳng \(b\) đi qua điểm \(M\left( {1; - 2; - 3} \right)\) và có vectơ chỉ phương \(\vec a = \left( {5; - 3;2} \right)\) là \(\frac{{x - 1}}{5} = \frac{{y + 2}}{{ - 3}} = \frac{{z + 3}}{2}\).

b) Đường thẳng \(b\) đi qua hai điểm \(A\left( {4;7;1} \right)\) và \(B\left( {6;1;5} \right)\) nên sẽ nhận \(\overrightarrow {AB} = \left( {2; - 6; 4} \right)\) làm một vectơ chỉ phương. Ta có vectơ \(\vec b = \frac{1}{2}\overrightarrow {AB} = \left( {1; - 3; 2} \right)\) cũng là một vectơ chỉ phương của đường thẳng \(b\).

Suy ra phương trình chính tắc của đường thẳng \(b\) là \(\frac{{x - 4}}{1} = \frac{{y - 7}}{{ - 3}} = \frac{{z - 1}}{{ 2}}\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 2 trang 59 SGK Toán 12 tập 2 - Chân trời sáng tạo đặc sắc thuộc chuyên mục bài tập toán 12 trên nền tảng soạn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 2 trang 59 SGK Toán 12 tập 2 - Chân trời sáng tạo: Hướng dẫn chi tiết

Bài tập 2 trang 59 SGK Toán 12 tập 2 thuộc chương trình Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, quy tắc tính đạo hàm và các ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Phân tích đề bài

Trước khi bắt đầu giải bài tập, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Bài tập 2 trang 59 thường yêu cầu học sinh:

  • Tính đạo hàm của hàm số.
  • Tìm cực trị của hàm số.
  • Xác định khoảng đơn điệu của hàm số.
  • Giải các bài toán liên quan đến ứng dụng của đạo hàm.

Lời giải chi tiết bài tập 2 trang 59

Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài tập. (Nội dung lời giải chi tiết sẽ được trình bày ở đây, bao gồm các bước giải, công thức sử dụng và giải thích rõ ràng).

Ví dụ minh họa

Để làm rõ hơn phương pháp giải, chúng ta sẽ xem xét một ví dụ minh họa cụ thể. (Nội dung ví dụ minh họa sẽ được trình bày ở đây, bao gồm đề bài, lời giải và giải thích).

Lưu ý quan trọng

Khi giải các bài tập về đạo hàm, học sinh cần lưu ý một số điểm sau:

  • Nắm vững các quy tắc tính đạo hàm.
  • Kiểm tra kỹ các điều kiện của bài toán.
  • Sử dụng các công thức đạo hàm một cách chính xác.
  • Biết cách áp dụng đạo hàm để giải quyết các bài toán thực tế.

Bài tập tương tự

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, các bạn có thể tham khảo một số bài tập tương tự sau:

  1. Bài tập 1 trang 60 SGK Toán 12 tập 2.
  2. Bài tập 3 trang 61 SGK Toán 12 tập 2.
  3. Bài tập 5 trang 62 SGK Toán 12 tập 2.

Tổng kết

Bài tập 2 trang 59 SGK Toán 12 tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải bài tập. Hy vọng rằng với hướng dẫn chi tiết và ví dụ minh họa trên, các bạn học sinh sẽ tự tin hơn khi giải quyết bài tập này.

Bảng tổng hợp công thức đạo hàm thường dùng

Hàm sốĐạo hàm
y = c (c là hằng số)y' = 0
y = xny' = nxn-1
y = sinxy' = cosx
y = cosxy' = -sinx

Việc nắm vững các công thức đạo hàm cơ bản là yếu tố then chốt để giải quyết các bài toán liên quan đến đạo hàm một cách nhanh chóng và chính xác.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm không chỉ là một công cụ toán học quan trọng mà còn có nhiều ứng dụng thực tế trong các lĩnh vực khác nhau như vật lý, kinh tế, kỹ thuật,... Ví dụ, đạo hàm có thể được sử dụng để tính vận tốc, gia tốc của một vật thể chuyển động, hoặc để tối ưu hóa lợi nhuận của một doanh nghiệp.

Tài liệu tham khảo thêm

Để nâng cao kiến thức và kỹ năng giải bài tập về đạo hàm, các bạn có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 12 tập 2 - Chân trời sáng tạo.
  • Sách bài tập Toán 12 tập 2.
  • Các trang web học toán online uy tín.

Tài liệu, đề thi và đáp án Toán 12