Bài tập 13 trang 67 SGK Toán 12 tập 2 thuộc chương trình Toán 12 Chân trời sáng tạo là một phần quan trọng trong quá trình ôn tập và củng cố kiến thức về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập 13 trang 67 SGK Toán 12 tập 2, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Cho bốn điểm \(A\left( { - 2;6;3} \right)\), \(B\left( {1;0;6} \right)\), \(C\left( {0;2; - 1} \right)\), \(D\left( {1;4;0} \right)\). a) Viết phương trình mặt phẳng \(\left( {BCD} \right)\). Suy ra \(ABCD\) là một tứ diện. b) Tính chiều cao \(AH\) của tứ diện \(ABCD\). c) Viết phương trình mặt phẳng \(\left( \alpha \right)\) chứa \(AB\) và song song với \(CD\).
Đề bài
Cho bốn điểm \(A\left( { - 2;6;3} \right)\), \(B\left( {1;0;6} \right)\), \(C\left( {0;2; - 1} \right)\), \(D\left( {1;4;0} \right)\).
a) Viết phương trình mặt phẳng \(\left( {BCD} \right)\). Suy ra \(ABCD\) là một tứ diện.
b) Tính chiều cao \(AH\) của tứ diện \(ABCD\).
c) Viết phương trình mặt phẳng \(\left( \alpha \right)\) chứa \(AB\) và song song với \(CD\).
Phương pháp giải - Xem chi tiết
a) Mặt phẳng \(\left( {BCD} \right)\) đi qua ba điểm \(B\), \(C\), \(D\) nên sẽ có một cặp vectơ chỉ phương là \(\overrightarrow {BC} \) và \(\overrightarrow {BD} \). Suy ra một vectơ pháp tuyến của \(\left( {BCD} \right)\) là \(\vec n = \left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right]\). Từ đó viết phương trình mặt phẳng \(\left( {BCD} \right)\).
Để chứng minh \(ABCD\) là một tứ diện, cần chỉ ra điểm \(A\) không nằm trên \(\left( {BCD} \right)\).
b) Chiều cao \(AH\) của tứ diện \(ABCD\) chính là khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {BCD} \right)\). Sử dụng công thức tính khoảng cách từ một điểm đến mặt phẳng để tính khoảng cách đó.
c) Mặt phẳng \(\left( \alpha \right)\) chứa \(AB\) và song song với \(CD\) nên nó sẽ có một cặp vectơ chỉ phương là \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \). Suy ra một vectơ pháp tuyến của \(\left( \alpha \right)\) là \(\overrightarrow {{n_1}} = \left[ {\overrightarrow {AB} ,\overrightarrow {CD} } \right]\). Từ đó viết phương trình mặt phẳng \(\left( \alpha \right)\).
Lời giải chi tiết
a) Mặt phẳng \(\left( {BCD} \right)\) đi qua ba điểm \(B\left( {1;0;6} \right)\), \(C\left( {0;2; - 1} \right)\), \(D\left( {1;4;0} \right)\) nên sẽ có một cặp vectơ chỉ phương là \(\overrightarrow {BC} = \left( { - 1;2; - 7} \right)\) và \(\overrightarrow {BD} = \left( {0;4; - 6} \right)\). Suy ra một vectơ pháp tuyến của \(\left( {BCD} \right)\) là \(\vec n = \left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right] = \left( {16; - 6; - 4} \right)\).
Vậy phương trình mặt phẳng \(\left( {BCD} \right)\) là \(16\left( {x - 0} \right) - 6\left( {y - 2} \right) - 4\left( {z + 1} \right) = 0\), hay \(8x - 3y - 2z + 4 = 0\).
Thay toạ độ điểm \(A\left( { - 2;6;3} \right)\) vào phương trình mặt phẳng \(\left( {BCD} \right)\), ta thấy không thoả mãn, do \(8.\left( { - 2} \right) - 3.6 - 2.3 + 4 = - 36 \ne 0\). Vậy điểm \(A\) không nằm trên \(\left( {BCD} \right)\), điều đó đồng nghĩa \(ABCD\) là một tứ diện.
b) Chiều cao \(AH\) của tứ diện \(ABCD\) chính là khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {BCD} \right)\), khoảng cách đó bằng \(d\left( {A,\left( {BCD} \right)} \right) = \frac{{\left| {8.\left( { - 2} \right) - 3.6 - 2.3 + 4} \right|}}{{\sqrt {{8^2} + {{\left( { - 3} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = \frac{{36}}{{\sqrt {77} }}\)
c) Mặt phẳng \(\left( \alpha \right)\) chứa \(AB\) và song song với \(CD\) nên nó sẽ có một cặp vectơ chỉ phương là \(\overrightarrow {AB} = \left( {3; - 6;3} \right)\) và \(\overrightarrow {CD} = \left( {1;2;1} \right)\). Suy ra một vectơ pháp tuyến của \(\left( \alpha \right)\) là \(\overrightarrow {{n_1}} = \left[ {\overrightarrow {AB} ,\overrightarrow {CD} } \right] = \left( { - 12;0;12} \right)\). Vậy phương trình mặt phẳng \(\left( \alpha \right)\) là \( - 12\left( {x - 1} \right) + 0\left( {y - 0} \right) + 12\left( {z - 6} \right) = 0\), hay \( - x + z - 5 = 0\).
Bài tập 13 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập điển hình về ứng dụng đạo hàm để khảo sát hàm số. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Bài tập 13 thường yêu cầu học sinh thực hiện các công việc sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng nhau phân tích một ví dụ cụ thể. Giả sử hàm số cần khảo sát là:
f(x) = x3 - 3x2 + 2
f'(x) = 3x2 - 6x
f''(x) = 6x - 6
Giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy x = 0 hoặc x = 2
Xét dấu f'(x):
Giải phương trình f''(x) = 0:
6x - 6 = 0
x = 1
Hàm số f(x) = x3 - 3x2 + 2 có:
Để giải các bài tập về đạo hàm một cách nhanh chóng và chính xác, các em học sinh có thể tham khảo một số mẹo sau:
Ngoài SGK Toán 12 tập 2 - Chân trời sáng tạo, các em học sinh có thể tham khảo thêm các tài liệu sau để học tập và ôn luyện:
Hy vọng với lời giải chi tiết và những chia sẻ trên, các em học sinh sẽ tự tin hơn khi giải bài tập 13 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo và đạt kết quả tốt trong môn Toán.