Logo Header
  1. Môn Toán
  2. Giải bài tập 7 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 7 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 7 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 7 trang 28 SGK Toán 12 tập 2 theo chương trình Chân trời sáng tạo.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong học tập.

Biết rằng (intlimits_0^2 {fleft( x right)dx} = - 4). Giá trị của (intlimits_0^2 {left[ {3x - 2fleft( x right)} right]dx} ) bằng A. ( - 2) B. (12) C. (14) D. (22)

Đề bài

Biết rằng \(\int\limits_0^2 {f\left( x \right)dx} = - 4\). Giá trị của \(\int\limits_0^2 {\left[ {3x - 2f\left( x \right)} \right]dx} \) bằng

A. \( - 2\)

B. \(12\)

C. \(14\)

D. \(22\)

Phương pháp giải - Xem chi tiếtGiải bài tập 7 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo 1

Sử dụng các tính chất của tích phân để tính giá trị của tích phân trên.

Lời giải chi tiết

Ta có \(\int\limits_0^2 {\left[ {3x - 2f\left( x \right)} \right]dx} = \int\limits_0^2 {3xdx} - 2\int\limits_0^2 {f\left( x \right)dx} = \left. {\left( {\frac{{3{x^2}}}{2}} \right)} \right|_0^2 - 2.4 = \left( {6 - 0} \right) - 2.(-4) = 14\).

Vậy đáp án đúng là C.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 7 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo đặc sắc thuộc chuyên mục toán 12 trên nền tảng học toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 7 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo: Tổng quan

Bài tập 7 trang 28 SGK Toán 12 tập 2 thuộc chương trình Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của một đại lượng. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập 7 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo

Bài tập 7 thường bao gồm các dạng bài sau:

  • Dạng 1: Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước, có thể là hàm số đơn giản hoặc hàm số phức tạp.
  • Dạng 2: Tìm cực trị của hàm số: Yêu cầu tìm điểm cực đại, cực tiểu của hàm số bằng cách giải phương trình đạo hàm bằng 0 và xét dấu đạo hàm.
  • Dạng 3: Khảo sát sự biến thiên của hàm số: Yêu cầu xác định khoảng đồng biến, nghịch biến của hàm số dựa vào dấu của đạo hàm.
  • Dạng 4: Ứng dụng đạo hàm để giải quyết bài toán thực tế: Yêu cầu sử dụng đạo hàm để giải quyết các bài toán liên quan đến tốc độ, gia tốc, hoặc các đại lượng thay đổi theo thời gian.

Lời giải chi tiết bài tập 7 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo

Để giúp bạn hiểu rõ hơn về cách giải bài tập 7 trang 28, chúng tôi sẽ trình bày lời giải chi tiết cho từng dạng bài:

Ví dụ 1: Tính đạo hàm của hàm số f(x) = x^3 - 2x^2 + 5x - 1

Lời giải:

f'(x) = 3x^2 - 4x + 5

Ví dụ 2: Tìm cực trị của hàm số g(x) = x^4 - 4x^2 + 3

Lời giải:

g'(x) = 4x^3 - 8x = 4x(x^2 - 2)

Giải phương trình g'(x) = 0, ta được x = 0, x = √2, x = -√2

Xét dấu g'(x), ta thấy:

  • x < -√2: g'(x) < 0 (hàm số nghịch biến)
  • -√2 < x < 0: g'(x) > 0 (hàm số đồng biến)
  • 0 < x < √2: g'(x) < 0 (hàm số nghịch biến)
  • x > √2: g'(x) > 0 (hàm số đồng biến)

Vậy hàm số g(x) đạt cực đại tại x = -√2 và x = √2, đạt cực tiểu tại x = 0.

Ví dụ 3: Khảo sát sự biến thiên của hàm số h(x) = x^2 - 6x + 9

Lời giải:

h'(x) = 2x - 6

Giải phương trình h'(x) = 0, ta được x = 3

Xét dấu h'(x), ta thấy:

  • x < 3: h'(x) < 0 (hàm số nghịch biến)
  • x > 3: h'(x) > 0 (hàm số đồng biến)

Vậy hàm số h(x) nghịch biến trên khoảng (-∞, 3) và đồng biến trên khoảng (3, +∞).

Mẹo giải bài tập đạo hàm hiệu quả

Để giải bài tập đạo hàm một cách hiệu quả, bạn nên:

  • Nắm vững các công thức tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các quy tắc tính đạo hàm một cách linh hoạt.
  • Kiểm tra lại kết quả sau khi giải xong.

Tài liệu tham khảo hữu ích

Ngoài SGK Toán 12 tập 2, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách bài tập Toán 12 tập 2.
  • Các trang web học toán online uy tín.
  • Các video hướng dẫn giải bài tập Toán 12 trên YouTube.

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài tập 7 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12