Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 7 trang 28 SGK Toán 12 tập 2 theo chương trình Chân trời sáng tạo.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong học tập.
Biết rằng (intlimits_0^2 {fleft( x right)dx} = - 4). Giá trị của (intlimits_0^2 {left[ {3x - 2fleft( x right)} right]dx} ) bằng A. ( - 2) B. (12) C. (14) D. (22)
Đề bài
Biết rằng \(\int\limits_0^2 {f\left( x \right)dx} = - 4\). Giá trị của \(\int\limits_0^2 {\left[ {3x - 2f\left( x \right)} \right]dx} \) bằng
A. \( - 2\)
B. \(12\)
C. \(14\)
D. \(22\)
Phương pháp giải - Xem chi tiết
Sử dụng các tính chất của tích phân để tính giá trị của tích phân trên.
Lời giải chi tiết
Ta có \(\int\limits_0^2 {\left[ {3x - 2f\left( x \right)} \right]dx} = \int\limits_0^2 {3xdx} - 2\int\limits_0^2 {f\left( x \right)dx} = \left. {\left( {\frac{{3{x^2}}}{2}} \right)} \right|_0^2 - 2.4 = \left( {6 - 0} \right) - 2.(-4) = 14\).
Vậy đáp án đúng là C.
Bài tập 7 trang 28 SGK Toán 12 tập 2 thuộc chương trình Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của một đại lượng. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài tập 7 thường bao gồm các dạng bài sau:
Để giúp bạn hiểu rõ hơn về cách giải bài tập 7 trang 28, chúng tôi sẽ trình bày lời giải chi tiết cho từng dạng bài:
Lời giải:
f'(x) = 3x^2 - 4x + 5
Lời giải:
g'(x) = 4x^3 - 8x = 4x(x^2 - 2)
Giải phương trình g'(x) = 0, ta được x = 0, x = √2, x = -√2
Xét dấu g'(x), ta thấy:
Vậy hàm số g(x) đạt cực đại tại x = -√2 và x = √2, đạt cực tiểu tại x = 0.
Lời giải:
h'(x) = 2x - 6
Giải phương trình h'(x) = 0, ta được x = 3
Xét dấu h'(x), ta thấy:
Vậy hàm số h(x) nghịch biến trên khoảng (-∞, 3) và đồng biến trên khoảng (3, +∞).
Để giải bài tập đạo hàm một cách hiệu quả, bạn nên:
Ngoài SGK Toán 12 tập 2, bạn có thể tham khảo thêm các tài liệu sau:
Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài tập 7 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo một cách hiệu quả. Chúc bạn học tập tốt!