Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 4 trang 57 SGK Toán 12 tập 1 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết, kèm theo các giải thích cụ thể để bạn có thể hiểu rõ bản chất của bài toán.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 2, SA vuông góc với đáy và SA bằng 1 (Hình 14). Thiết lập hệ toạ độ như hình vẽ, hãy vẽ các vectơ đơn vị trên các trục Ox, Oy, Oz và tìm toạ độ các điểm A, B, C, S.
Đề bài
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 2, SA vuông góc với đáy và SA bằng 1 (Hình 14). Thiết lập hệ toạ độ như hình vẽ, hãy vẽ các vectơ đơn vị trên các trục Ox, Oy, Oz và tìm toạ độ các điểm A, B, C, S.
Phương pháp giải - Xem chi tiết
Quan sát hệ trục tọa độ đã vẽ.
Lời giải chi tiết
\(OA = \sqrt{3}\)
\(\overrightarrow {OA} = \sqrt{3} \overrightarrow j = > A(0;\sqrt{3};0)\)
\(\overrightarrow {OB} = - \overrightarrow i = > B( - 1;0;0)\)
\(\overrightarrow {OC} = \overrightarrow i = > C(1;0;0)\)
\(\overrightarrow {OS} = \sqrt{3}\overrightarrow j + \overrightarrow k = > S(0;\sqrt{3};1)\)
Bài tập 4 trang 57 SGK Toán 12 tập 1 - Chân trời sáng tạo thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn một bên, giới hạn tại một điểm và các tính chất của giới hạn để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải toán là rất quan trọng để hoàn thành tốt bài tập này.
Bài tập 4 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh tính giới hạn của hàm số tại một điểm cho trước. Các hàm số có thể là hàm đa thức, hàm hữu tỉ, hoặc các hàm số khác. Để giải quyết bài tập này, học sinh cần:
Có nhiều phương pháp để giải bài tập về giới hạn, tùy thuộc vào dạng của hàm số. Một số phương pháp phổ biến bao gồm:
Ví dụ: Tính limx→2 (x2 - 4) / (x - 2)
Giải:
Ta có: (x2 - 4) / (x - 2) = (x - 2)(x + 2) / (x - 2) = x + 2 (với x ≠ 2)
Vậy, limx→2 (x2 - 4) / (x - 2) = limx→2 (x + 2) = 2 + 2 = 4
Để củng cố kiến thức và kỹ năng giải bài tập về giới hạn, bạn có thể tự giải các bài tập sau:
Bài tập 4 trang 57 SGK Toán 12 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh hiểu rõ hơn về khái niệm giới hạn và các phương pháp tính giới hạn. Hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, bạn sẽ có thể giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!