Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 11 trang 67 SGK Toán 12 tập 2 theo chương trình Chân trời sáng tạo.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong học tập.
Mặt cầu tâm \(I\left( { - 3;0;4} \right)\) và đi qua điểm \(A\left( { - 3;0;0} \right)\) có phương trình là A. \({\left( {x - 3} \right)^2} + {y^2} + {\left( {z + 4} \right)^2} = 4\) B. \({\left( {x - 3} \right)^2} + {y^2} + {\left( {z + 4} \right)^2} = 16\) C. \({\left( {x + 3} \right)^2} + {y^2} + {\left( {z - 4} \right)^2} = 16\) D. \({\left( {x + 3} \right)^2} + {y^2} + {\left( {z - 4} \right)^2} = 4\)
Đề bài
Mặt cầu tâm \(I\left( { - 3;0;4} \right)\) và đi qua điểm \(A\left( { - 3;0;0} \right)\) có phương trình là
A. \({\left( {x - 3} \right)^2} + {y^2} + {\left( {z + 4} \right)^2} = 4\)
B. \({\left( {x - 3} \right)^2} + {y^2} + {\left( {z + 4} \right)^2} = 16\)
C. \({\left( {x + 3} \right)^2} + {y^2} + {\left( {z - 4} \right)^2} = 16\)
D. \({\left( {x + 3} \right)^2} + {y^2} + {\left( {z - 4} \right)^2} = 4\)
Phương pháp giải - Xem chi tiết
Mặt cầu \(\left( S \right)\) có tâm \(I\left( {a;b;c} \right)\) và đi qua \(A\) nên \(IA\) là một bán kính của \(\left( S \right)\). Tính \(R = IA\), sau đó viết phương trình mặt cầu: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).
Lời giải chi tiết
Mặt cầu \(\left( S \right)\) có tâm \(I\left( { - 3;0;4} \right)\) và đi qua \(A\left( { - 3;0;0} \right)\) nên \(IA\) là một bán kính của \(\left( S \right)\). Ta có \(IA = \sqrt {{{\left( { - 3 + 3} \right)}^2} + {{\left( {0 - 0} \right)}^2} + {{\left( {4 - 0} \right)}^2}} = 4\).
Vậy phương trình mặt cầu \(\left( S \right)\) là \({\left( {x + 3} \right)^2} + {y^2} + {\left( {z - 4} \right)^2} = 16\).
Suy ra đáp án đúng là C.
Bài tập 11 trang 67 SGK Toán 12 tập 2 thuộc chương trình Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của đại lượng. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài tập 11 thường có dạng như sau: Một vật thể chuyển động theo một quỹ đạo được mô tả bởi một hàm số. Yêu cầu là tìm vận tốc và gia tốc của vật thể tại một thời điểm nhất định, hoặc xác định thời điểm vật thể đạt vận tốc cực đại hoặc cực tiểu.
Đề bài: Một vật thể chuyển động theo hàm vị trí s(t) = t3 - 6t2 + 9t + 2 (trong đó s tính bằng mét và t tính bằng giây). Tìm vận tốc và gia tốc của vật thể tại thời điểm t = 2 giây.
Giải:
Kết luận: Tại thời điểm t = 2 giây, vận tốc của vật thể là -3 m/s và gia tốc là 0 m/s2.
Ngoài dạng bài tập tìm vận tốc và gia tốc tại một thời điểm, bài tập 11 trang 67 còn có thể yêu cầu:
Mẹo giải:
Để nắm vững kiến thức và kỹ năng giải bài tập về đạo hàm và ứng dụng của đạo hàm, bạn nên luyện tập thêm với các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Hãy tìm kiếm các bài tập có độ khó tăng dần để thử thách bản thân và nâng cao khả năng giải quyết vấn đề.
Bài tập 11 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Hy vọng rằng với hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, bạn sẽ tự tin hơn trong việc giải quyết các bài tập tương tự.