Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài tập 12 trang 67 SGK Toán 12 tập 2 chương trình Chân trời sáng tạo. Bài viết này sẽ giúp học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Chúng tôi cung cấp các bước giải rõ ràng, dễ hiểu, kèm theo các lưu ý quan trọng để bạn nắm vững kiến thức. Hãy cùng giaitoan.edu.vn khám phá lời giải chi tiết ngay sau đây!
Cho bốn điểm \(A\left( {1;0;0} \right)\), \(B\left( {0;1;0} \right)\), \(C\left( {0;0;1} \right)\), \(D\left( { - 2;1; - 1} \right)\). a) Chứng minh \(A\), \(B\), \(C\), \(D\) là bốn đỉnh của một hình chóp. b) Tìm góc giữa hai đường thẳng \(AB\) và \(CD\). c) Tính độ dài đường cao của hình chóp \(A.BCD\).
Đề bài
Cho bốn điểm \(A\left( {1;0;0} \right)\), \(B\left( {0;1;0} \right)\), \(C\left( {0;0;1} \right)\), \(D\left( { - 2;1; - 1} \right)\).
a) Chứng minh \(A\), \(B\), \(C\), \(D\) là bốn đỉnh của một hình chóp.
b) Tìm góc giữa hai đường thẳng \(AB\) và \(CD\).
c) Tính độ dài đường cao của hình chóp \(A.BCD\).
Phương pháp giải - Xem chi tiết
a) Để chứng minh \(A\), \(B\), \(C\), \(D\) là bốn đỉnh của một hình chóp, viết phương trình mặt phẳng \(\left( {BCD} \right)\), rồi chỉ ra điểm \(A\) không nằm trên mặt phẳng \(\left( {BCD} \right)\).
b) Xác định toạ độ của các vectơ chỉ phương \(\overrightarrow {AB} \) , \(\overrightarrow {CD} \) lần lượt của các đường thẳng \(AB\) và \(CD\), sau đó sử dụng công thức \(\cos \left( {AB,CD} \right) = \left| {\cos \left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right)} \right|\).
c) Độ dài đường cao của hình chóp \(A.BCD\) chính là khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {BCD} \right)\), sau đó sử dụng công thức tính khoảng cách từ một điểm đến mặt phẳng trong không gian.
Lời giải chi tiết
a) Mặt phẳng \(\left( {BCD} \right)\) đi qua \(B\left( {0;1;0} \right)\), \(C\left( {0;0;1} \right)\), \(D\left( { - 2;1; - 1} \right)\) nên nó có một cặp vectơ chỉ phương là \(\overrightarrow {BC} = \left( {0; - 1;1} \right)\) và \(\overrightarrow {BD} = \left( { - 2;0; - 1} \right)\). Vậy một vectơ pháp tuyến của \(\left( {BCD} \right)\) là \(\vec n = \left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right] = \left( {1; - 2; - 2} \right)\). Suy ra phương trình mặt phẳng \(\left( {BCD} \right)\) là \(1\left( {x - 0} \right) - 2\left( {y - 0} \right) - 2\left( {z - 1} \right) = 0\), hay \(x - 2y - 2z + 2 = 0\).
Thay toạ độ điểm \(A\) vào phương trình mặt phẳng \(\left( {BCD} \right)\), ta thấy không thoả mãn, do \(1 - 2.0 - 2.0 + 2 = 3 \ne 0\).
Vậy \(A\) không thuộc \(\left( {BCD} \right)\), suy ra \(A\), \(B\), \(C\), \(D\) không đồng phẳng. Điều này cũng có nghĩa 4 điểm trên là 4 đỉnh của một hình chóp.
b) Ta có \(\overrightarrow {AB} = \left( { - 1;1;0} \right)\) và \(\overrightarrow {CD} = \left( { - 2;1; - 2} \right)\) lần lượt là các vectơ chỉ phương của các đường thẳng \(AB\) và \(CD\).
Ta có \(\cos \left( {AB,CD} \right) = \left| {\cos \left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right)} \right| = \frac{{\left| {\left( { - 1} \right).\left( { - 2} \right) + 1.1 + 0.\left( { - 2} \right)} \right|}}{{\sqrt {{{\left( { - 1} \right)}^2} + {1^2} + {0^2}} .\sqrt {{{\left( { - 2} \right)}^2} + {1^2} + {{\left( { - 2} \right)}^2}} }} = \frac{{\sqrt 2 }}{2}\)
Suy ra \(\left( {AB,CD} \right) = {45^o}\).
c) Ta có độ dài đường cao của hình chóp \(A.BCD\) chính là khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {BCD} \right)\). Khoảng cách đó bằng:
\(d\left( {A,\left( {BCD} \right)} \right) = \frac{{\left| {1 - 2.0 - 2.0 + 2} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = 1\)
Bài tập 12 trang 67 SGK Toán 12 tập 2 thuộc chương trình Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của đại lượng. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Trước khi bắt đầu giải bài tập, điều quan trọng là phải đọc kỹ đề bài, xác định rõ các thông tin đã cho và yêu cầu của bài toán. Sau đó, cần lựa chọn phương pháp giải phù hợp. Đối với bài tập 12 trang 67, phương pháp giải thường bao gồm:
Đề bài: (Giả định đề bài cụ thể ở đây - ví dụ: Cho hàm số y = x^3 - 3x^2 + 2. Tìm khoảng đồng biến, nghịch biến của hàm số.)
Lời giải:
Khi giải bài tập về đạo hàm, cần lưu ý một số điểm sau:
Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:
Bài tập 12 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và các lưu ý quan trọng trên, các bạn học sinh sẽ tự tin hơn khi giải bài tập và đạt kết quả tốt trong môn Toán.