Logo Header
  1. Môn Toán
  2. Giải bài tập 12 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 12 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 12 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài tập 12 trang 67 SGK Toán 12 tập 2 chương trình Chân trời sáng tạo. Bài viết này sẽ giúp học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Chúng tôi cung cấp các bước giải rõ ràng, dễ hiểu, kèm theo các lưu ý quan trọng để bạn nắm vững kiến thức. Hãy cùng giaitoan.edu.vn khám phá lời giải chi tiết ngay sau đây!

Cho bốn điểm \(A\left( {1;0;0} \right)\), \(B\left( {0;1;0} \right)\), \(C\left( {0;0;1} \right)\), \(D\left( { - 2;1; - 1} \right)\). a) Chứng minh \(A\), \(B\), \(C\), \(D\) là bốn đỉnh của một hình chóp. b) Tìm góc giữa hai đường thẳng \(AB\) và \(CD\). c) Tính độ dài đường cao của hình chóp \(A.BCD\).

Đề bài

Cho bốn điểm \(A\left( {1;0;0} \right)\), \(B\left( {0;1;0} \right)\), \(C\left( {0;0;1} \right)\), \(D\left( { - 2;1; - 1} \right)\).

a) Chứng minh \(A\), \(B\), \(C\), \(D\) là bốn đỉnh của một hình chóp.

b) Tìm góc giữa hai đường thẳng \(AB\) và \(CD\).

c) Tính độ dài đường cao của hình chóp \(A.BCD\).

Phương pháp giải - Xem chi tiếtGiải bài tập 12 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo 1

a) Để chứng minh \(A\), \(B\), \(C\), \(D\) là bốn đỉnh của một hình chóp, viết phương trình mặt phẳng \(\left( {BCD} \right)\), rồi chỉ ra điểm \(A\) không nằm trên mặt phẳng \(\left( {BCD} \right)\).

b) Xác định toạ độ của các vectơ chỉ phương \(\overrightarrow {AB} \) , \(\overrightarrow {CD} \) lần lượt của các đường thẳng \(AB\) và \(CD\), sau đó sử dụng công thức \(\cos \left( {AB,CD} \right) = \left| {\cos \left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right)} \right|\).

c) Độ dài đường cao của hình chóp \(A.BCD\) chính là khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {BCD} \right)\), sau đó sử dụng công thức tính khoảng cách từ một điểm đến mặt phẳng trong không gian.

Lời giải chi tiết

Giải bài tập 12 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo 2

a) Mặt phẳng \(\left( {BCD} \right)\) đi qua \(B\left( {0;1;0} \right)\), \(C\left( {0;0;1} \right)\), \(D\left( { - 2;1; - 1} \right)\) nên nó có một cặp vectơ chỉ phương là \(\overrightarrow {BC} = \left( {0; - 1;1} \right)\) và \(\overrightarrow {BD} = \left( { - 2;0; - 1} \right)\). Vậy một vectơ pháp tuyến của \(\left( {BCD} \right)\) là \(\vec n = \left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right] = \left( {1; - 2; - 2} \right)\). Suy ra phương trình mặt phẳng \(\left( {BCD} \right)\) là \(1\left( {x - 0} \right) - 2\left( {y - 0} \right) - 2\left( {z - 1} \right) = 0\), hay \(x - 2y - 2z + 2 = 0\).

Thay toạ độ điểm \(A\) vào phương trình mặt phẳng \(\left( {BCD} \right)\), ta thấy không thoả mãn, do \(1 - 2.0 - 2.0 + 2 = 3 \ne 0\).

Vậy \(A\) không thuộc \(\left( {BCD} \right)\), suy ra \(A\), \(B\), \(C\), \(D\) không đồng phẳng. Điều này cũng có nghĩa 4 điểm trên là 4 đỉnh của một hình chóp.

b) Ta có \(\overrightarrow {AB} = \left( { - 1;1;0} \right)\) và \(\overrightarrow {CD} = \left( { - 2;1; - 2} \right)\) lần lượt là các vectơ chỉ phương của các đường thẳng \(AB\) và \(CD\).

Ta có \(\cos \left( {AB,CD} \right) = \left| {\cos \left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right)} \right| = \frac{{\left| {\left( { - 1} \right).\left( { - 2} \right) + 1.1 + 0.\left( { - 2} \right)} \right|}}{{\sqrt {{{\left( { - 1} \right)}^2} + {1^2} + {0^2}} .\sqrt {{{\left( { - 2} \right)}^2} + {1^2} + {{\left( { - 2} \right)}^2}} }} = \frac{{\sqrt 2 }}{2}\)

Suy ra \(\left( {AB,CD} \right) = {45^o}\).

c) Ta có độ dài đường cao của hình chóp \(A.BCD\) chính là khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {BCD} \right)\). Khoảng cách đó bằng:

\(d\left( {A,\left( {BCD} \right)} \right) = \frac{{\left| {1 - 2.0 - 2.0 + 2} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = 1\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 12 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo đặc sắc thuộc chuyên mục bài tập toán 12 trên nền tảng môn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 12 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo: Tổng quan

Bài tập 12 trang 67 SGK Toán 12 tập 2 thuộc chương trình Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của đại lượng. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Phân tích đề bài và phương pháp giải

Trước khi bắt đầu giải bài tập, điều quan trọng là phải đọc kỹ đề bài, xác định rõ các thông tin đã cho và yêu cầu của bài toán. Sau đó, cần lựa chọn phương pháp giải phù hợp. Đối với bài tập 12 trang 67, phương pháp giải thường bao gồm:

  1. Tính đạo hàm: Tính đạo hàm của hàm số được cho trong bài toán.
  2. Tìm điểm cực trị: Giải phương trình đạo hàm bằng 0 để tìm các điểm cực trị của hàm số.
  3. Xác định khoảng đơn điệu: Xét dấu đạo hàm trên các khoảng xác định để xác định khoảng đơn điệu của hàm số.
  4. Giải quyết yêu cầu bài toán: Dựa vào kết quả tìm được để giải quyết yêu cầu cụ thể của bài toán.

Lời giải chi tiết bài tập 12 trang 67

Đề bài: (Giả định đề bài cụ thể ở đây - ví dụ: Cho hàm số y = x^3 - 3x^2 + 2. Tìm khoảng đồng biến, nghịch biến của hàm số.)

Lời giải:

  1. Tính đạo hàm: y' = 3x^2 - 6x
  2. Tìm điểm cực trị: Giải phương trình y' = 0, ta được 3x^2 - 6x = 0 => x = 0 hoặc x = 2
  3. Xác định khoảng đơn điệu:
    • Với x < 0, y' > 0 => Hàm số đồng biến trên khoảng (-∞, 0)
    • Với 0 < x < 2, y' < 0 => Hàm số nghịch biến trên khoảng (0, 2)
    • Với x > 2, y' > 0 => Hàm số đồng biến trên khoảng (2, +∞)
  4. Kết luận: Hàm số y = x^3 - 3x^2 + 2 đồng biến trên các khoảng (-∞, 0) và (2, +∞), nghịch biến trên khoảng (0, 2).

Lưu ý quan trọng khi giải bài tập

Khi giải bài tập về đạo hàm, cần lưu ý một số điểm sau:

  • Nắm vững các quy tắc tính đạo hàm: Quy tắc đạo hàm của tổng, hiệu, tích, thương, hàm hợp,...
  • Kiểm tra lại kết quả: Sau khi tính đạo hàm và tìm điểm cực trị, cần kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Vận dụng linh hoạt các kiến thức: Kết hợp kiến thức về đạo hàm với các kiến thức khác trong chương trình để giải quyết bài toán một cách hiệu quả.
  • Thực hành thường xuyên: Luyện tập giải nhiều bài tập khác nhau để nắm vững phương pháp và kỹ năng giải toán.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:

  • Tính vận tốc và gia tốc: Trong vật lý, đạo hàm của quãng đường theo thời gian là vận tốc, và đạo hàm của vận tốc theo thời gian là gia tốc.
  • Tìm cực trị của hàm số: Trong kinh tế, đạo hàm được sử dụng để tìm điểm tối đa hoặc tối thiểu của lợi nhuận, chi phí,...
  • Phân tích sự thay đổi: Đạo hàm giúp phân tích sự thay đổi của một đại lượng so với một đại lượng khác.

Tổng kết

Bài tập 12 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và các lưu ý quan trọng trên, các bạn học sinh sẽ tự tin hơn khi giải bài tập và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 12