Chào mừng các em học sinh đến với lời giải chi tiết bài tập mục 2 trang 63, 64 SGK Toán 12 tập 2 chương trình Chân trời sáng tạo. Tại giaitoan.edu.vn, chúng tôi cung cấp đáp án chính xác, dễ hiểu cùng với phương pháp giải bài tập hiệu quả, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Bài tập trong mục 2 tập trung vào các kiến thức quan trọng của chương trình, đòi hỏi các em phải có sự hiểu biết sâu sắc và khả năng vận dụng linh hoạt.
Bề mặt của một bóng thám không dạng hình cầu có phương trình ({x^2} + {y^2} + {z^2} - 200x - 600y - {rm{4 000}}z + {rm{4 099 900}} = 0). Tìm toạ độ tâm và bán kính mặt cầu.
Trả lời câu hỏi Vận dụng 3 trang 64 SGK Toán 12 Chân trời sáng tạo
Đầu in phun của một máy in 3D đang in bề mặt của một mặt cầu có phương trình \({x^2} + {y^2} + {z^2} + \frac{1}{8}x - \frac{1}{8}y - z + \frac{1}{{16}} = 0\). Tính khoảng cách từ đầu in phun đến tâm mặt cầu.
Phương pháp giải:
Khoảng cách từ đầu in phun đến tâm mặt cầu chính là bán kính của mặt cầu đó.
Phương trình mặt cầu có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\), xác định các hệ số \(a\), \(b\), \(c\), \(d\), sau đó tính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).
Lời giải chi tiết:
Khoảng cách từ đầu in phun đến tâm mặt cầu chính là bán kính của mặt cầu đó.
Phương trình mặt cầu \({x^2} + {y^2} + {z^2} + \frac{1}{8}x - \frac{1}{8}y - z + \frac{1}{{16}} = 0\) có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) với \(a = - \frac{1}{{16}}\), \(b = \frac{1}{{16}}\), \(c = \frac{1}{2}\) và \(d = \frac{1}{{16}}\).
Suy ra bán kính của mặt cầu là \(R = \sqrt {{{\left( { - \frac{1}{{16}}} \right)}^2} + {{\left( {\frac{1}{{16}}} \right)}^2} + {{\left( {\frac{1}{2}} \right)}^2} - \frac{1}{{16}}} = \frac{{5\sqrt 2 }}{{16}}\).
Trả lời câu hỏi Vận dụng 2 trang 64 SGK Toán 12 Chân trời sáng tạo
Bề mặt của một bóng thám không dạng hình cầu có phương trình \({x^2} + {y^2} + {z^2} - 200x - 600y - {\rm{4 000}}z + {\rm{4 099 900}} = 0\). Tìm toạ độ tâm và bán kính mặt cầu.
Phương pháp giải:
Phương trình của bề mặt bóng thám không là phương trình có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\). Xác định \(a\), \(b\), \(c\), \(d\) và tính \({a^2} + {b^2} + {c^2} - d\), rồi rút ra kết luận.
Lời giải chi tiết:
Phương trình của bề mặt bóng thám không là phương trình có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\), với \(a = 100\), \(b = 300\), \(c = 2{\rm{ 000}}\) và \(d = {\rm{4 099 900}}\).
Ta có \({a^2} + {b^2} + {c^2} - d = {100^2} + {300^2} + 2{\rm{ }}{000^2} - 4{\rm{ }}099{\rm{ }}900 = 100 > 0.\)
Vậy bóng thám không có tâm \(I\left( {100;300;2000} \right)\) và bán kính \(R = \sqrt {100} = 10\).
Trả lời câu hỏi Vận dụng 3 trang 64 SGK Toán 12 Chân trời sáng tạo
Đầu in phun của một máy in 3D đang in bề mặt của một mặt cầu có phương trình \({x^2} + {y^2} + {z^2} + \frac{1}{8}x - \frac{1}{8}y - z + \frac{1}{{16}} = 0\). Tính khoảng cách từ đầu in phun đến tâm mặt cầu.
Phương pháp giải:
Khoảng cách từ đầu in phun đến tâm mặt cầu chính là bán kính của mặt cầu đó.
Phương trình mặt cầu có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\), xác định các hệ số \(a\), \(b\), \(c\), \(d\), sau đó tính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).
Lời giải chi tiết:
Khoảng cách từ đầu in phun đến tâm mặt cầu chính là bán kính của mặt cầu đó.
Phương trình mặt cầu \({x^2} + {y^2} + {z^2} + \frac{1}{8}x - \frac{1}{8}y - z + \frac{1}{{16}} = 0\) có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) với \(a = - \frac{1}{{16}}\), \(b = \frac{1}{{16}}\), \(c = \frac{1}{2}\) và \(d = \frac{1}{{16}}\).
Suy ra bán kính của mặt cầu là \(R = \sqrt {{{\left( { - \frac{1}{{16}}} \right)}^2} + {{\left( {\frac{1}{{16}}} \right)}^2} + {{\left( {\frac{1}{2}} \right)}^2} - \frac{1}{{16}}} = \frac{{5\sqrt 2 }}{{16}}\).
Trả lời câu hỏi Vận dụng 2 trang 64 SGK Toán 12 Chân trời sáng tạo
Bề mặt của một bóng thám không dạng hình cầu có phương trình \({x^2} + {y^2} + {z^2} - 200x - 600y - {\rm{4 000}}z + {\rm{4 099 900}} = 0\). Tìm toạ độ tâm và bán kính mặt cầu.
Phương pháp giải:
Phương trình của bề mặt bóng thám không là phương trình có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\). Xác định \(a\), \(b\), \(c\), \(d\) và tính \({a^2} + {b^2} + {c^2} - d\), rồi rút ra kết luận.
Lời giải chi tiết:
Phương trình của bề mặt bóng thám không là phương trình có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\), với \(a = 100\), \(b = 300\), \(c = 2{\rm{ 000}}\) và \(d = {\rm{4 099 900}}\).
Ta có \({a^2} + {b^2} + {c^2} - d = {100^2} + {300^2} + 2{\rm{ }}{000^2} - 4{\rm{ }}099{\rm{ }}900 = 100 > 0.\)
Vậy bóng thám không có tâm \(I\left( {100;300;2000} \right)\) và bán kính \(R = \sqrt {100} = 10\).
Mục 2 của SGK Toán 12 tập 2 chương trình Chân trời sáng tạo thường xoay quanh các chủ đề về đạo hàm, ứng dụng của đạo hàm trong việc khảo sát hàm số, và các bài toán liên quan đến cực trị, giá trị lớn nhất, giá trị nhỏ nhất của hàm số. Việc nắm vững kiến thức nền tảng về đạo hàm là vô cùng quan trọng để giải quyết các bài tập trong mục này.
Đề bài: (Giả định một đề bài cụ thể về đạo hàm và khảo sát hàm số)
Lời giải:
Đề bài: (Giả định một đề bài cụ thể về ứng dụng đạo hàm để giải bài toán tối ưu)
Lời giải:
Để giải các bài tập về đạo hàm và ứng dụng đạo hàm một cách hiệu quả, các em cần:
Đề bài: (Giả định một đề bài phức tạp hơn, yêu cầu kết hợp nhiều kiến thức)
Lời giải: (Giải chi tiết bài toán, phân tích các bước giải và giải thích rõ ràng)
Hy vọng với lời giải chi tiết và các phương pháp giải bài tập được trình bày trên đây, các em học sinh sẽ tự tin hơn trong việc học tập và giải quyết các bài tập về đạo hàm và ứng dụng đạo hàm trong SGK Toán 12 tập 2 chương trình Chân trời sáng tạo. Chúc các em học tốt!
Chủ đề | Nội dung chính |
---|---|
Đạo hàm | Định nghĩa, quy tắc tính đạo hàm, đạo hàm của các hàm số cơ bản. |
Khảo sát hàm số | Xác định khoảng đồng biến, nghịch biến, cực trị, điểm uốn. |
Bài toán tối ưu | Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số. |