Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 2 theo chương trình Chân trời sáng tạo. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài tập 2 trang 27, từ đó nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tiết kiệm thời gian và đạt kết quả tốt nhất trong môn Toán.
Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số (y = {x^3} - x), trục hoành và hai đường thẳng (x = 0), (x = 2).
Đề bài
Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = {x^3} - x\), trục hoành và hai đường thẳng \(x = 0\), \(x = 2\).
Phương pháp giải - Xem chi tiết
Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a\), \(x = b\) là \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \).
Lời giải chi tiết
Diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = {x^3} - x\), trục hoành và hai đường thẳng \(x = 0\), \(x = 2\) là: \(S = \int\limits_{ - 1}^1 {\left| {{x^3} - x} \right|dx} \).
Ta có \({x^3} - x = 0 \Leftrightarrow x = 0\) hoặc \(x = \pm 1\).
Do đó:
\(S = \int\limits_0^2 {\left| {{x^3} - x} \right|dx} {\rm{\;}} = \int\limits_0^1 {\left| {{x^3} - x} \right|dx} {\rm{\;}} + \int\limits_1^2 {\left| {{x^3} - x} \right|dx} {\rm{\;}} = \int\limits_0^1 {\left( {x - {x^3}} \right)dx} + \int\limits_1^2 {\left( {{x^3} - x} \right)dx} \)
\( = \left( {\frac{{{x^2}}}{2} - \frac{{{x^4}}}{4}} \right)\left| {\begin{array}{*{20}{c}}{^1}\\{_0}\end{array}} \right. + \left( {\frac{{{x^4}}}{4} - \frac{{{x^2}}}{2}} \right)\left| {\begin{array}{*{20}{c}}{^2}\\{_1}\end{array}} \right. = \frac{1}{4} + \frac{9}{4} = \frac{5}{2}\).
Bài tập 2 trang 27 SGK Toán 12 tập 2 thuộc chương trình Chân trời sáng tạo tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của một đại lượng. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài tập 2 thường bao gồm các dạng bài sau:
Bài toán: Một vật chuyển động theo phương trình s(t) = t3 - 3t2 + 5t + 2, trong đó s(t) là quãng đường đi được sau thời gian t (giây). Tính vận tốc tức thời của vật tại thời điểm t = 2 giây.
Giải:
Vận tốc tức thời của vật tại thời điểm t được tính bằng đạo hàm của hàm quãng đường s(t) theo thời gian t:
v(t) = s'(t) = 3t2 - 6t + 5
Thay t = 2 vào công thức trên, ta được:
v(2) = 3(2)2 - 6(2) + 5 = 12 - 12 + 5 = 5 (m/s)
Vậy vận tốc tức thời của vật tại thời điểm t = 2 giây là 5 m/s.
Để nắm vững kiến thức và kỹ năng giải bài tập 2 trang 27 SGK Toán 12 tập 2, bạn có thể tham khảo thêm các tài liệu sau:
Bài tập 2 trang 27 SGK Toán 12 tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Hy vọng với những hướng dẫn và ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết bài tập này và đạt kết quả tốt trong môn Toán.