Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 6 trang 12 SGK Toán 12 tập 2 theo chương trình Chân trời sáng tạo.
Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và giúp bạn nắm vững kiến thức Toán học.
Kí hiệu \(h\left( x \right)\) là chiều cao của một cây (tính theo mét) sau khi trồng \(x\) năm. Biết rằng sau năm đầu tiên cây cao 2 m. Trong 10 năm tiếp theo, cây phát triểun với tốc độ \(h'\left( x \right) = \frac{1}{x}\) (m/năm). a) Xác định chiều cao của cây sau \(x\) năm \(\left( {1 \le x \le 11} \right)\). b) Sau bao nhiêu năm cây cao 3 m?
Đề bài
Kí hiệu \(h\left( x \right)\) là chiều cao của một cây (tính theo mét) sau khi trồng \(x\) năm. Biết rằng sau năm đầu tiên cây cao 2 m. Trong 10 năm tiếp theo, cây phát triểun với tốc độ \(h'\left( x \right) = \frac{1}{x}\) (m/năm).
a) Xác định chiều cao của cây sau \(x\) năm \(\left( {1 \le x \le 11} \right)\).
b) Sau bao nhiêu năm cây cao 3 m?
Phương pháp giải - Xem chi tiết
a) Chiều cao của cây sau \(x\) năm là \(h\left( x \right) = \int {h'\left( x \right)dx} \). Chúng ta nguyên hàm hàm số \(h'\left( x \right)\) để tìm \(h\left( x \right)\), sau đó sử dụng dữ kiện “sau năm đầu tiên cây cao 2 m” để tìm hằng số \(C\).
b) Để xác định sau bao nhiêu năm cây cao 3 m, ta giải phương trình \(h\left( x \right) = 3\).
Lời giải chi tiết
a) Chiều cao của cây sau \(x\) năm là
\(h\left( x \right) = \int {h'\left( x \right)dx} = \int {\frac{1}{x}dx} = \ln \left| x \right| + C = \ln x + C\) (do \(1 \le x \le 11\)).
Sau năm đầu tiên, cây cao 2 m, do đó ta có \(h\left( 1 \right) = 2\).
Suy ra \(\ln 1 + C = 2 \Rightarrow 0 + C = 2 \Rightarrow C = 2\).
Vậy chiều cao của cây sau \(x\) năm là \(h\left( x \right) = \ln x + 2\) (m).
b) Để xác định sau bao nhiêu năm cây cao 3 m, ta giải phương trình \(h\left( x \right) = 3\).
Ta có \(h\left( x \right) = 3 \Rightarrow \ln x + 2 = 3 \Rightarrow \ln x = 1 \Rightarrow x = e \approx 2,72\).
Vậy sau khoảng \(2,72\) năm thì cây cao 3 m.
Bài tập 6 trang 12 SGK Toán 12 tập 2 chương trình Chân trời sáng tạo thuộc chủ đề về đạo hàm của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế, cụ thể là tìm đạo hàm của hàm số tại một điểm cho trước. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ cho kỳ thi THPT Quốc gia mà còn là nền tảng cho các môn học ở bậc đại học.
Bài tập 6 bao gồm các hàm số khác nhau, yêu cầu học sinh tính đạo hàm của chúng. Để giải bài tập này, học sinh cần:
Dưới đây là lời giải chi tiết cho từng câu của bài tập 6:
Hàm số: f(x) = 3x^2 - 5x + 2
Đạo hàm: f'(x) = 6x - 5
Tại x = 1: f'(1) = 6(1) - 5 = 1
Hàm số: g(x) = sin(x) + cos(x)
Đạo hàm: g'(x) = cos(x) - sin(x)
Tại x = π/4: g'(π/4) = cos(π/4) - sin(π/4) = √2/2 - √2/2 = 0
Hàm số: h(x) = e^x + ln(x)
Đạo hàm: h'(x) = e^x + 1/x
Tại x = 1: h'(1) = e^1 + 1/1 = e + 1
Ngoài bài tập 6, còn rất nhiều bài tập tương tự yêu cầu tính đạo hàm của hàm số. Để giải quyết các bài tập này, bạn có thể áp dụng các phương pháp sau:
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Để củng cố kiến thức về đạo hàm, bạn có thể luyện tập thêm các bài tập sau:
Bài tập | Nguồn |
---|---|
Bài tập 1 | Sách bài tập Toán 12 tập 2 |
Bài tập 2 | Đề thi thử THPT Quốc gia |
Bài tập 6 trang 12 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm. Hy vọng với lời giải chi tiết và các phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin hơn khi giải quyết các bài tập tương tự.