Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 1 - Chân trời sáng tạo. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài tập 3 trang 56, từ đó nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tiết kiệm thời gian và đạt kết quả tốt nhất.
Cho tứ diện SABC có ABC là tam giác vuông tại B, BC = 3, BA = 2, SA vuông góc với mặt phẳng (ABC) và có độ dài bằng 2 (Hình 13). a) Xác định một hệ toạ độ dựa trên gợi ý của hình vẽ và chỉ ra các vectơ đơn vị trên các trục toạ độ. b) Tìm toạ độ các điểm A, B, C, S.
Đề bài
Cho tứ diện SABC có ABC là tam giác vuông tại B, BC = 3, BA = 2, SA vuông góc với mặt phẳng (ABC) và có độ dài bằng 2 (Hình 13).
a) Xác định một hệ toạ độ dựa trên gợi ý của hình vẽ và chỉ ra các vectơ đơn vị trên các trục toạ độ.
b) Tìm toạ độ các điểm A, B, C, S.
Phương pháp giải - Xem chi tiết
Quan sát hình vẽ.
Lời giải chi tiết
a)
b) \(\overrightarrow {BA} = 2\overrightarrow j = > A(0;2;0)\).
B trùng với gốc tọa độ O nên B(0;0;0).
\(\overrightarrow {BC} = 3\overrightarrow j = > C(3;0;0)\).
Gọi E là hình chiếu của S lên Oz. Theo quy tắc hình bình hành ta có:
\(\overrightarrow {BS} = 2\overrightarrow j + 2\overrightarrow k = > S(2;0;2)\).
Bài tập 3 trang 56 SGK Toán 12 tập 1 - Chân trời sáng tạo thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn một bên, giới hạn tại một điểm và các tính chất của giới hạn để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là vô cùng quan trọng để đạt kết quả tốt trong các kỳ thi sắp tới.
Bài tập 3 bao gồm các câu hỏi yêu cầu tính giới hạn của hàm số tại một điểm, sử dụng định nghĩa và các tính chất của giới hạn. Các hàm số trong bài tập có thể là hàm đa thức, hàm hữu tỉ, hoặc các hàm số phức tạp hơn. Để giải quyết bài tập này, học sinh cần:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài tập 3 trang 56 SGK Toán 12 tập 1 - Chân trời sáng tạo:
Để giải câu a, ta cần tính giới hạn của hàm số f(x) = (x^2 - 1) / (x - 1) khi x tiến tới 1. Ta có thể phân tích tử số thành (x - 1)(x + 1), sau đó rút gọn biểu thức. Khi đó, giới hạn của f(x) khi x tiến tới 1 bằng giới hạn của (x + 1) khi x tiến tới 1, tức là 2.
Đối với câu b, ta cần tính giới hạn của hàm số g(x) = (x^3 + 8) / (x + 2) khi x tiến tới -2. Ta có thể phân tích tử số thành (x + 2)(x^2 - 2x + 4), sau đó rút gọn biểu thức. Khi đó, giới hạn của g(x) khi x tiến tới -2 bằng giới hạn của (x^2 - 2x + 4) khi x tiến tới -2, tức là 12.
Câu c yêu cầu tính giới hạn của hàm số h(x) = (sqrt(x + 4) - 2) / x khi x tiến tới 0. Ta có thể nhân cả tử và mẫu với liên hợp của tử số, tức là (sqrt(x + 4) + 2). Sau đó, rút gọn biểu thức và tính giới hạn. Kết quả là 1/4.
Ngoài bài tập 3 trang 56, còn rất nhiều bài tập tương tự về giới hạn hàm số. Để giải quyết các bài tập này, học sinh cần nắm vững các phương pháp sau:
Để củng cố kiến thức và kỹ năng giải bài tập về giới hạn hàm số, bạn có thể luyện tập thêm với các bài tập sau:
Bài tập 3 trang 56 SGK Toán 12 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính giới hạn hàm số. Hy vọng rằng với lời giải chi tiết và các phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.