Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 1 trang 59 SGK Toán 12 tập 2 theo chương trình Chân trời sáng tạo.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập hiệu quả, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Viết phương trình tham số của đường thẳng \(a\) trong mỗi trường hợp sau: a) Đường thẳng \(a\) đi qua điểm \(M\left( {0; - 2; - 3} \right)\) và có vectơ chỉ phương \(\vec a = \left( {1; - 5;0} \right)\) b) Đường thẳng \(a\) đi qua hai điểm \(A\left( {0;0;2} \right)\) và \(B\left( {3; - 2;5} \right)\).
Đề bài
Viết phương trình tham số của đường thẳng \(a\) trong mỗi trường hợp sau:
a) Đường thẳng \(a\) đi qua điểm \(M\left( {0; - 2; - 3} \right)\) và có vectơ chỉ phương \(\vec a = \left( {1; - 5;0} \right)\)
b) Đường thẳng \(a\) đi qua hai điểm \(A\left( {0;0;2} \right)\) và \(B\left( {3; - 2;5} \right)\).
Phương pháp giải - Xem chi tiết
a) Phương trình tham số của đường thẳng \(a\) đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\vec a = \left( {{a_1};{a_2};{a_3}} \right)\) là \(\left\{ \begin{array}{l}x = {x_0} + {a_1}t\\y = {y_0} + {a_2}t\\z = {z_0} + {a_3}t\end{array} \right.\).
b) Đường thẳng \(a\) đi qua hai điểm \(A\) và \(B\) nên sẽ nhận \(\overrightarrow {AB} \) là một vectơ chỉ phương. Từ đó viết phương trình đường thẳng \(a\) đi qua điểm \(A\) và có vectơ chỉ phương là \(\overrightarrow {AB} \).
Lời giải chi tiết
a) Phương trình tham số của đường thẳng \(a\) đi qua điểm \(M\left( {0; - 2; - 3} \right)\) và có vectơ chỉ phương \(\vec a = \left( {1; - 5;0} \right)\) là \(\left\{ \begin{array}{l}x = 0 + 1t\\y = - 2 - 5t\\z = - 3 + 0t\end{array} \right.\) hay \(\left\{ \begin{array}{l}x = t\\y = - 2 - 5t\\z = - 3\end{array} \right.\).
b) Đường thẳng \(a\) đi qua hai điểm \(A\left( {0;0;2} \right)\) và \(B\left( {3; - 2;5} \right)\) nên nó nhận \(\overrightarrow {AB} = \left( {3; - 2;3} \right)\) là một vectơ chỉ phương.
Suy ra phương trình tham số của đường thẳng \(a\) là \(\left\{ \begin{array}{l}x = 0 + 3t\\y = 0 - 2t\\z = 2 + 3t\end{array} \right.\) hay \(\left\{ \begin{array}{l}x = 3t\\y = - 2t\\z = 2 + 3t\end{array} \right.\)
Bài tập 1 trang 59 SGK Toán 12 tập 2 chương trình Chân trời sáng tạo thuộc chủ đề về đạo hàm của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về các quy tắc tính đạo hàm, đặc biệt là quy tắc tính đạo hàm của tổng, hiệu, tích, thương và đạo hàm hàm hợp để giải quyết các bài toán cụ thể. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình Toán 12.
Bài tập 1 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh tính đạo hàm của các hàm số cho trước. Các hàm số này có thể ở dạng đơn giản hoặc phức tạp, đòi hỏi học sinh phải phân tích và áp dụng các quy tắc đạo hàm một cách linh hoạt. Dưới đây là chi tiết từng câu hỏi và lời giải:
Để tính đạo hàm của hàm số này, ta áp dụng quy tắc đạo hàm của tổng và hiệu, đồng thời sử dụng quy tắc đạo hàm của lũy thừa. Cụ thể:
Vậy, f'(x) = 3x^2 - 6x + 2
Để tính đạo hàm của hàm số này, ta áp dụng quy tắc đạo hàm của tích. Cụ thể:
g'(x) = (x^2 + 1)'(x - 2) + (x^2 + 1)(x - 2)'
g'(x) = (2x)(x - 2) + (x^2 + 1)(1)
g'(x) = 2x^2 - 4x + x^2 + 1
g'(x) = 3x^2 - 4x + 1
Để tính đạo hàm của hàm số này, ta áp dụng quy tắc đạo hàm của tổng và đạo hàm của các hàm lượng giác sin(x) và cos(x). Cụ thể:
h'(x) = (sin(x))' + (cos(x))'
h'(x) = cos(x) - sin(x)
Khi giải các bài tập về đạo hàm, học sinh cần lưu ý một số điểm sau:
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Để củng cố kiến thức về đạo hàm, bạn có thể luyện tập thêm các bài tập sau:
Bài tập 1 trang 59 SGK Toán 12 tập 2 chương trình Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm. Hy vọng với lời giải chi tiết và các lưu ý trên, bạn sẽ tự tin hơn khi giải quyết các bài toán về đạo hàm.