Chào mừng các em học sinh đến với lời giải chi tiết bài tập 3 trang 85 SGK Toán 12 tập 1 - Chân trời sáng tạo. Tại giaitoan.edu.vn, chúng tôi cung cấp đáp án và phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Bài tập 3 trang 85 thuộc chương trình học Toán 12 tập 1, tập trung vào các kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế.
Dũng là học sinh rất giỏi chơi rubik, bạn có thể giải nhiều loại khối rubik khác nhau. Trong một lần tập luyện giải khối rubik 3×3, bạn Dũng đã tự thống kê lại thời gian giải rubik trong 25 lần giải liên tiếp ở bảng sau:
Đề bài
Dũng là học sinh rất giỏi chơi rubik, bạn có thể giải nhiều loại khối rubik khác nhau. Trong một lần tập luyện giải khối rubik 3×3, bạn Dũng đã tự thống kê lại thời gian giải rubik trong 25 lần giải liên tiếp ở bảng sau:
a) Khoảng biến thiên của mẫu số liệu ghép nhóm nhận giá trị nào trong các giá trị dưới đây?
A. 6.
B. 8.
C. 10.
D. 12.
b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm là
A. 10,75.
B. 1,75.
C. 3,63.
D. 14,38.
c) Độ lệch chuẩn của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào dưới đây?
A. 5,98.
B. 6.
C. 2,44.
D. 2,5.
Phương pháp giải - Xem chi tiết
a) Khoảng biến thiên của mẫu số liệu ghép nhóm là hiệu số giữa đầu mút phải của nhóm cuối cùng và đầu mút trái của nhóm đầu tiên có chứa dữ liệu của mẫu số liệu.
b) Tứ phân vị thứ k, kí hiệu là \({Q_k}\), với k = 1, 2, 3 của mẫu số liệu ghép nhóm được xác định như sau:
\({Q_k} = {u_m} + \frac{{\frac{{kn}}{4} - C}}{{{n_m}}}({u_{m + 1}} - {u_m})\)
trong đó:
\(n = {n_1} + {n_2} + {n_3} + ... + {n_k}\) là cỡ mẫu
\([{u_m};{u_{m + 1}}]\) là nhóm chứa tứ phân vị thứ k
\({n_m}\) là tần số của nhóm chứa tứ phân vị thứ k
\(C = {n_1} + {n_2} + {n_3} + ... + {n_{m - 1}}\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm, kí hiệu \({\Delta _Q}\), là hiệu giữa tứ phân vị thứ ba \({Q_3}\) và tứ phân vị thứ nhất \({Q_1}\) của mẫu số liệu ghép nhóm đó, tức là \({\Delta _Q} = {Q_3} - {Q_1}\).
c) Phương sai của mẫu số liệu ghép nhóm, kí hiệu \({S^2}\), được tính bởi công thức:
\({S^2} = \frac{1}{n}[{n_1}{({c_1} - \overline x )^2} + {n_2}{({c_2} - \overline x )^2} + ... + {n_k}{({c_k} - \overline x )^2}]\)
Trong đó: \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu
\(\overline x = \frac{1}{n}({n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k})\) là số trung bình
Độ lệch chuẩn của mẫu số liệu ghép nhóm, kí hiệu \(S\), là căn bậc hai số học của phương sai.
Lời giải chi tiết
a) Chọn C
Khoảng biến thiên của mẫu số liệu là: 18 - 8 = 10 (giây)
b) Chọn C
Cỡ mẫu \(n = 25\)
Gọi \({x_1};{\rm{ }}{x_2}; \ldots ;{\rm{ }}{x_{25}}\) là mẫu số liệu gốc về thời gian giải rubik trong 25 lần của bạn Dũng được xếp theo thứ tự không giảm.
Ta có: \({x_1}; \ldots ;{\rm{ }}{x_4} \in [8;10)\); \({x_5}; \ldots ;{\rm{ }}{x_{10}} \in [10;12)\);\({x_{11}}; \ldots ;{\rm{ }}{x_{18}} \in [12;14)\);\({x_{19}};...;{x_{22}} \in [14;16)\);\({x_{23}};...;{x_{25}} \in [16;18)\)
Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}({x_6} + {x_7}) \in [10;12)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 10 + \frac{{\frac{{25}}{4} - 4}}{6}(12 - 10) = 10,75\)
Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{19}} \in [14;16)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 14 + \frac{{\frac{{3.25}}{4} - (4 + 6 + 8)}}{4}(16 - 14) = 14,375\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 3,63\)
c) Chọn C
Số trung bình: \(\overline x = \frac{{4.9 + 6.11 + 8.13 + 4.15 + 3.17}}{{25}} = 12,68\)
Độ lệch chuẩn: \(\sigma = \sqrt {\frac{{{{4.9}^2} + {{6.11}^2} + {{8.13}^2} + {{4.15}^2} + {{3.17}^2}}}{{25}} - 12,{{68}^2}} \approx 2,44\)
Bài tập 3 trang 85 SGK Toán 12 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán liên quan đến sự biến thiên của hàm số. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, bao gồm đạo hàm của hàm số, đạo hàm của tổng, hiệu, tích, thương của các hàm số, và quy tắc đạo hàm của hàm hợp.
Trước khi đi vào giải chi tiết, chúng ta cùng xem lại đề bài của bài tập 3 trang 85 SGK Toán 12 tập 1 - Chân trời sáng tạo:
(Nội dung đề bài sẽ được chèn vào đây - ví dụ: Cho hàm số y = f(x) = x^3 - 3x^2 + 2. Tìm các điểm cực trị của hàm số.)
Để giải bài toán này, chúng ta cần thực hiện các bước sau:
Bước 1: Tính đạo hàm bậc nhất
Ta có hàm số f(x) = x^3 - 3x^2 + 2. Đạo hàm bậc nhất của hàm số là:
f'(x) = 3x^2 - 6x
Bước 2: Tìm các điểm mà f'(x) = 0
Để tìm các điểm mà f'(x) = 0, ta giải phương trình:
3x^2 - 6x = 0
⇔ 3x(x - 2) = 0
⇔ x = 0 hoặc x = 2
Bước 3: Xác định dấu của f'(x) trên các khoảng xác định
Ta xét các khoảng sau:
Bước 4: Kết luận về các điểm cực trị
Dựa vào dấu của f'(x), ta có thể kết luận:
Vậy, hàm số y = f(x) = x^3 - 3x^2 + 2 đạt cực đại tại x = 0 với giá trị là 2 và đạt cực tiểu tại x = 2 với giá trị là -2.
Để hiểu sâu hơn về ứng dụng của đạo hàm trong việc giải quyết các bài toán liên quan đến sự biến thiên của hàm số, các em có thể tham khảo thêm các bài tập tương tự trong SGK Toán 12 tập 1 - Chân trời sáng tạo. Ngoài ra, các em cũng có thể tìm kiếm các tài liệu học tập trực tuyến hoặc tham gia các khóa học toán online để nâng cao kiến thức và kỹ năng giải bài tập.
Ví dụ bài tập tương tự:
Tìm các điểm cực trị của hàm số y = x^4 - 4x^2 + 3.
Để học tốt môn Toán 12, các em cần:
Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!