Logo Header
  1. Môn Toán
  2. Giải bài tập 3 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 3 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 3 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 3 trang 27 SGK Toán 12 tập 2 theo chương trình Chân trời sáng tạo.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải một cách dễ hiểu, kèm theo các bước giải chi tiết để giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số (y = frac{{{x^2} + 1}}{x}), (y = - x) và hai đường thẳng (x = 1), (x = 4).

Đề bài

Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số \(y = \frac{{{x^2} + 1}}{x}\), \(y = - x\) và hai đường thẳng \(x = 1\), \(x = 4\).

Phương pháp giải - Xem chi tiếtGiải bài tập 3 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo 1

Diện tích hình phẳng giới hạn bởi đồ thị các hàm số \(y = f\left( x \right)\), \(y = g\left( x \right)\) và hai đường thẳng \(x = a\), \(x = b\) là \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

Lời giải chi tiết

Diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số \(y = \frac{{{x^2} + 1}}{x}\), \(y = - x\) và hai đường thẳng \(x = 1\), \(x = 4\) là

\(S = \int\limits_1^4 {\left| {\frac{{{x^2} + 1}}{x} - \left( { - x} \right)} \right|dx} = \int\limits_1^4 {\left| {\frac{{2{x^2} + 1}}{x}} \right|dx} = \int\limits_1^4 {\left( {\frac{{2{x^2} + 1}}{x}} \right)dx} = \int\limits_1^4 {\left( {2x + \frac{1}{x}} \right)dx} \)

\( = \left. {\left( {{x^2} + \ln \left| x \right|} \right)} \right|_1^4 = 15 + \ln 4\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 3 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo đặc sắc thuộc chuyên mục đề thi toán 12 trên nền tảng đề thi toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 3 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo: Tổng quan

Bài tập 3 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, các quy tắc tính đạo hàm và các ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập 3 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo

Bài tập 3 bao gồm các câu hỏi liên quan đến việc tính đạo hàm của các hàm số lượng giác, hàm số mũ, hàm số logarit và các hàm số hợp. Các câu hỏi này được thiết kế để kiểm tra khả năng vận dụng kiến thức của học sinh vào việc giải quyết các bài toán cụ thể.

Hướng dẫn giải chi tiết bài tập 3 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo

Để giúp học sinh hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ cung cấp hướng dẫn giải chi tiết cho từng câu hỏi. Hướng dẫn giải này sẽ bao gồm các bước giải cụ thể, các công thức và quy tắc được sử dụng, cũng như các lưu ý quan trọng để tránh sai sót.

Câu a: Tính đạo hàm của hàm số y = sin(2x + 1)

Để tính đạo hàm của hàm số y = sin(2x + 1), ta sử dụng quy tắc đạo hàm của hàm số hợp: (u(v(x)))' = u'(v(x)) * v'(x). Trong trường hợp này, u(t) = sin(t) và v(x) = 2x + 1. Ta có u'(t) = cos(t) và v'(x) = 2. Do đó, y' = cos(2x + 1) * 2 = 2cos(2x + 1).

Câu b: Tính đạo hàm của hàm số y = e^(x^2 + 3x)

Tương tự như câu a, ta sử dụng quy tắc đạo hàm của hàm số hợp. Trong trường hợp này, u(t) = e^t và v(x) = x^2 + 3x. Ta có u'(t) = e^t và v'(x) = 2x + 3. Do đó, y' = e^(x^2 + 3x) * (2x + 3) = (2x + 3)e^(x^2 + 3x).

Câu c: Tính đạo hàm của hàm số y = ln(x^2 - 1)

Để tính đạo hàm của hàm số y = ln(x^2 - 1), ta sử dụng quy tắc đạo hàm của hàm số logarit: (ln(u(x)))' = u'(x) / u(x). Trong trường hợp này, u(x) = x^2 - 1. Ta có u'(x) = 2x. Do đó, y' = 2x / (x^2 - 1).

Các lưu ý khi giải bài tập về đạo hàm

  • Nắm vững các khái niệm cơ bản về đạo hàm, các quy tắc tính đạo hàm và các ứng dụng của đạo hàm.
  • Sử dụng đúng các công thức và quy tắc đạo hàm.
  • Kiểm tra lại kết quả sau khi tính đạo hàm.
  • Luyện tập thường xuyên để nâng cao kỹ năng giải bài tập.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Tính vận tốc và gia tốc của vật chuyển động.
  • Tìm cực trị và khoảng đơn điệu của hàm số.
  • Giải các bài toán tối ưu hóa.
  • Phân tích sự thay đổi của các đại lượng trong các hệ thống vật lý, kinh tế, xã hội.

Kết luận

Bài tập 3 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng rằng với hướng dẫn giải chi tiết và các lưu ý quan trọng mà chúng tôi đã cung cấp, bạn sẽ có thể giải bài tập này một cách hiệu quả và tự tin hơn trong quá trình học tập. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 12