Logo Header
  1. Môn Toán
  2. Giải bài tập 1 trang 79 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 1 trang 79 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 1 trang 79 SGK Toán 12 tập 2 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 1 trang 79 SGK Toán 12 tập 2 theo chương trình Chân trời sáng tạo.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải một cách dễ hiểu, kèm theo các bước giải chi tiết để giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Hộp thứ nhất có 3 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai có 3 viên bi xanh và 7 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên đồng thời 2 viên bi từ hộp thứ hai. a) Tính xác suất để hai viên bi lấy ra từ hộp thứ hai là bi đỏ. b) Biết rằng 2 viên bi lấy ra từ hộp thứ hai là bi đỏ, tính xác suất viên bi lấy ra từ hộp thứ nhất cũng là bi đỏ.

Đề bài

Hộp thứ nhất có 3 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai có 3 viên bi xanh và 7 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên đồng thời 2 viên bi từ hộp thứ hai.

a) Tính xác suất để hai viên bi lấy ra từ hộp thứ hai là bi đỏ.

b) Biết rằng 2 viên bi lấy ra từ hộp thứ hai là bi đỏ, tính xác suất viên bi lấy ra từ hộp thứ nhất cũng là bi đỏ.

Phương pháp giải - Xem chi tiếtGiải bài tập 1 trang 79 SGK Toán 12 tập 2 - Chân trời sáng tạo 1

Gọi \(A\) là biến cố “Lần thứ nhất lấy được viên bi đỏ”, \(B\) là biến cố “Lần thứ hai lấy ra được 2 viên bi đỏ”.

a) Xác suất cần tính là \(P\left( B \right)\). Để tính được xác suất này, ta sử dụng công thức tính xác suất toàn phần: \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right)\).

b) Xác suất cần tính là \(P\left( {A|B} \right)\). Sử dụng công thức Bayes để tính xác suất này.

Lời giải chi tiết

Gọi \(A\) là biến cố “Lần thứ nhất lấy được viên bi đỏ”, \(B\) là biến cố “Lần thứ hai lấy ra được 2 viên bi đỏ”. Theo đề bài, ta có \(P\left( A \right) = \frac{6}{{3 + 6}} = \frac{2}{3}\) và \(P\left( {\bar A} \right) = \frac{3}{{3 + 6}} = \frac{1}{3}.\)

Trường hợp lần thứ nhất lấy được viên bi đỏ bỏ vào hộp thứ hai, lúc này hộp thứ hai sẽ có 3 bi xanh và 8 bi đỏ, do đó \(P\left( {B|A} \right) = \frac{{C_8^2}}{{C_{11}^2}} = \frac{{28}}{{55}}.\)

Trường hợp lần thứ nhất lấy được viên bi xanh bỏ vào hộp thứ hai, lúc này hộp thứ hai sẽ có 4 viên bi xanh và 7 viên bi đỏ, do đó \(P\left( {B|\bar A} \right) = \frac{{C_7^2}}{{C_{11}^2}} = \frac{{21}}{{55}}.\)

a) Xác suất để lấy được hai viên bi đỏ ở hộp thứ hai là:

\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right) = \frac{2}{3}.\frac{{28}}{{55}} + \frac{1}{3}.\frac{{21}}{{55}} = \frac{7}{{15}}.\)

b) Xác suất để viên bi lấy ra từ hộp thứ nhất cũng là bi đỏ, nếu lấy ra được 2 viên bi đỏ ở hộp thứ hai là:

\(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{\frac{2}{3}.\frac{{28}}{{55}}}}{{\frac{7}{{15}}}} = \frac{8}{{11}}.\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 1 trang 79 SGK Toán 12 tập 2 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng soạn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 1 trang 79 SGK Toán 12 tập 2 - Chân trời sáng tạo: Tổng quan

Bài tập 1 trang 79 SGK Toán 12 tập 2 - Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, các quy tắc tính đạo hàm và các ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập 1 trang 79 SGK Toán 12 tập 2 - Chân trời sáng tạo

Bài tập 1 bao gồm các câu hỏi trắc nghiệm và bài tập tự luận. Các câu hỏi trắc nghiệm thường kiểm tra khả năng hiểu và vận dụng các khái niệm cơ bản về đạo hàm. Các bài tập tự luận yêu cầu học sinh phải trình bày lời giải chi tiết và rõ ràng.

Lời giải chi tiết bài tập 1 trang 79 SGK Toán 12 tập 2 - Chân trời sáng tạo

  1. Câu a: Tính đạo hàm của hàm số f(x) = x^3 - 2x^2 + 5x - 1

    Để tính đạo hàm của hàm số f(x) = x^3 - 2x^2 + 5x - 1, ta sử dụng quy tắc đạo hàm của tổng và hiệu, cũng như quy tắc đạo hàm của lũy thừa:

    • Đạo hàm của x^n là n*x^(n-1)
    • Đạo hàm của hằng số là 0

    Áp dụng các quy tắc trên, ta có:

    f'(x) = 3x^2 - 4x + 5

  2. Câu b: Tính đạo hàm của hàm số g(x) = sin(x) + cos(x)

    Để tính đạo hàm của hàm số g(x) = sin(x) + cos(x), ta sử dụng quy tắc đạo hàm của tổng và đạo hàm của các hàm lượng giác:

    • Đạo hàm của sin(x) là cos(x)
    • Đạo hàm của cos(x) là -sin(x)

    Áp dụng các quy tắc trên, ta có:

    g'(x) = cos(x) - sin(x)

  3. Câu c: Tính đạo hàm của hàm số h(x) = e^x + ln(x)

    Để tính đạo hàm của hàm số h(x) = e^x + ln(x), ta sử dụng quy tắc đạo hàm của tổng và đạo hàm của các hàm mũ và logarit:

    • Đạo hàm của e^x là e^x
    • Đạo hàm của ln(x) là 1/x

    Áp dụng các quy tắc trên, ta có:

    h'(x) = e^x + 1/x

Mở rộng kiến thức về đạo hàm

Đạo hàm là một khái niệm quan trọng trong toán học, có nhiều ứng dụng trong các lĩnh vực khác nhau như vật lý, kinh tế, kỹ thuật. Việc nắm vững kiến thức về đạo hàm sẽ giúp bạn giải quyết các bài toán thực tế một cách hiệu quả hơn.

Các dạng bài tập đạo hàm thường gặp

  • Tính đạo hàm của hàm số đơn thức, đa thức
  • Tính đạo hàm của hàm số lượng giác
  • Tính đạo hàm của hàm số mũ và logarit
  • Tính đạo hàm của hàm hợp
  • Ứng dụng đạo hàm để tìm cực trị, khoảng đơn điệu của hàm số

Lời khuyên khi học về đạo hàm

Để học tốt về đạo hàm, bạn cần:

  • Nắm vững các khái niệm cơ bản về đạo hàm
  • Hiểu rõ các quy tắc tính đạo hàm
  • Luyện tập giải nhiều bài tập khác nhau
  • Sử dụng các công cụ hỗ trợ học tập như máy tính bỏ túi, phần mềm giải toán

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức hữu ích về cách giải bài tập 1 trang 79 SGK Toán 12 tập 2 - Chân trời sáng tạo. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 12