Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 1 - Chân trời sáng tạo. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài tập 5 trang 58, từ đó nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tiết kiệm thời gian và đạt kết quả tốt nhất.
Trong không gian Oxyz, cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng 5, giao điểm hai đường chéo AC và BD trùng với gốc O. Các vectơ (overrightarrow {OB} ,overrightarrow {OC} ,overrightarrow {OS} )¬ lần lượt cùng hướng với (overrightarrow i ), (overrightarrow j ), (overrightarrow k ) và OA = OS = 4 (Hình 15). Tìm toạ độ các vectơ (overrightarrow {AB} ,overrightarrow {AC} ,overrightarrow {AS} ) và (overrightarrow {AM} )¬ ¬với M là trung điểm của cạnh SC.
Đề bài
Trong không gian Oxyz, cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng 5, giao điểm hai đường chéo AC và BD trùng với gốc O. Các vectơ \(\overrightarrow {OB} ,\overrightarrow {OC} ,\overrightarrow {OS} \) lần lượt cùng hướng với \(\overrightarrow i \), \(\overrightarrow j \), \(\overrightarrow k \) và OA = OS = 4 (Hình 15). Tìm toạ độ các vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {AS} \) và \(\overrightarrow {AM} \) với M là trung điểm của cạnh SC.
Phương pháp giải - Xem chi tiết
Quan sát hình vẽ. Tìm tọa độ các điểm A, B, C, S và M rồi tính tọa độ \(\overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {AS} \) và \(\overrightarrow {AM} \).
Lời giải chi tiết
Xét tam giác OAB vuông tại O: \(OB = \sqrt {A{B^2} - O{A^2}} = \sqrt {{5^2} - {4^2}} = 3\)
Ta có: \(\overrightarrow {OA} = - 4\overrightarrow j = > A(0; - 4;0)\)
\(\overrightarrow {OB} = 3\overrightarrow i = > B(3;0;0)\)
=> \(\overrightarrow {AB} = 3\overrightarrow i - 4\overrightarrow j = (3; - 4;0)\)
\(\overrightarrow {OC} = 4\overrightarrow j = > C(0;4;0)\) => \(\overrightarrow {AC} = 8\overrightarrow j = (0;8;0)\)
\(\overrightarrow {OS} = 4\overrightarrow k = > S(0;0;4)\) => \(\overrightarrow {AS} = 4\overrightarrow j + 4\overrightarrow k = (0;4;4)\)
\(\overrightarrow {OM} = \frac{1}{2}(\overrightarrow {OS} + \overrightarrow {OC} ) = \frac{1}{2}(4\overrightarrow k + 4\overrightarrow j ) = 2\overrightarrow j + 2\overrightarrow k = > \overrightarrow {OM} = (0;2;2) \Rightarrow M(0;2;2)\)
=> \(\overrightarrow {AM} = 6\overrightarrow j + 2\overrightarrow k = (0;6;2)\)
Bài tập 5 trang 58 SGK Toán 12 tập 1 - Chân trời sáng tạo thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn một bên, giới hạn tại một điểm và các tính chất của giới hạn để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là vô cùng quan trọng để đạt kết quả tốt trong các kỳ thi sắp tới.
Bài tập 5 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh tính giới hạn của hàm số tại một điểm cho trước. Các hàm số có thể là hàm đa thức, hàm hữu tỉ hoặc hàm lượng giác. Để giải quyết bài tập này, học sinh cần:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài tập 5 trang 58 SGK Toán 12 tập 1 - Chân trời sáng tạo:
Để tính giới hạn của hàm số tại một điểm, ta có thể sử dụng phương pháp thay trực tiếp giá trị của điểm đó vào hàm số. Tuy nhiên, nếu kết quả là một dạng vô định, ta cần sử dụng các kỹ thuật biến đổi đại số để đơn giản hóa biểu thức trước khi tính giới hạn.
Ví dụ, nếu hàm số là f(x) = (x^2 - 1) / (x - 1), ta có thể phân tích tử số thành (x - 1)(x + 1) và rút gọn biểu thức thành f(x) = x + 1. Sau đó, ta có thể thay x = 1 vào hàm số để tính giới hạn, kết quả là 2.
Trong trường hợp hàm số có chứa căn thức, ta có thể sử dụng phương pháp nhân liên hợp để khử căn thức và đơn giản hóa biểu thức. Phương pháp này dựa trên việc nhân cả tử số và mẫu số với liên hợp của biểu thức chứa căn thức.
Đối với các hàm số lượng giác, ta có thể sử dụng các công thức lượng giác cơ bản để biến đổi biểu thức và tính giới hạn. Ví dụ, ta có thể sử dụng công thức sin^2(x) + cos^2(x) = 1 để đơn giản hóa biểu thức chứa sin và cos.
Ngoài bài tập 5 trang 58, còn rất nhiều bài tập tương tự về giới hạn hàm số trong SGK Toán 12 tập 1 - Chân trời sáng tạo. Để giải quyết các bài tập này, học sinh cần nắm vững các kiến thức và kỹ năng sau:
Để củng cố kiến thức và kỹ năng giải bài tập về giới hạn hàm số, học sinh nên luyện tập thêm với các bài tập khác trong SGK và các tài liệu tham khảo. Ngoài ra, học sinh cũng có thể tìm kiếm các bài giảng trực tuyến hoặc tham gia các khóa học luyện thi để được hướng dẫn chi tiết và giải đáp thắc mắc.
Bài tập 5 trang 58 SGK Toán 12 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh hiểu rõ về giới hạn hàm số. Bằng cách nắm vững kiến thức nền tảng và kỹ năng giải bài tập, học sinh có thể tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.
Dạng bài tập | Phương pháp giải |
---|---|
Hàm đa thức | Thay trực tiếp giá trị |
Hàm hữu tỉ | Rút gọn biểu thức, thay trực tiếp giá trị |
Hàm lượng giác | Sử dụng công thức lượng giác |