Logo Header
  1. Môn Toán
  2. Giải bài tập 6 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo

Giải bài tập 6 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo

Giải bài tập 6 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài tập 6 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.

Xét một chất điểm chuyển động dọc theo trục (Ox). Toạ độ của chất điểm tại thời điểm (t) được xác định bởi hàm số (x(t) = {t^3} - 6{t^2} + 9t) với (t ge 0). Khi đó (x'(t)) là vận tốc của chất điểm tại thời điểm (t), kí hiệu (v(t)); (v'(t)) là gia tốc chuyển động của chất điểm tại thời điểm (t), kí hiệu (a(t)). a) Tìm các hàm (v(t))và (a(t)) b) Trong khoảng thời gian nào vận tốc của chất điểm tăng, trong khoảng thời gian nào vận tốc của chất điểm giảm?

Đề bài

Xét một chất điểm chuyển động dọc theo trục \(Ox\). Toạ độ của chất điểm tại thời điểm \(t\) được xác định bởi hàm số \(x(t) = {t^3} - 6{t^2} + 9t\) với \(t \ge 0\). Khi đó \(x'(t)\) là vận tốc của chất điểm tại thời điểm \(t\), kí hiệu \(v(t)\); \(v'(t)\) là gia tốc chuyển động của chất điểm tại thời điểm \(t\), kí hiệu \(a(t)\). a) Tìm các hàm \(v(t)\)và \(a(t)\)b) Trong khoảng thời gian nào vận tốc của chất điểm tăng, trong khoảng thời gian nào vận tốc của chất điểm giảm?

Phương pháp giải - Xem chi tiếtGiải bài tập 6 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo 1

Áp dụng công thức tính đạo hàm, xét dấu đạo hàm

Lời giải chi tiết

a) \(v(t) = x'(t) = 3{t^2} - 12t + 9\)

\(a(t) = v'(t) = 6t - 12\)

b) Tập xác định: \(D = [0; + \infty ]\)

\(a(t) = 0 \Leftrightarrow t = 2\)

Bảng biến thiên:

Giải bài tập 6 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo 2

Vậy trong khoảng từ t = 0 đến t = 2 thì vận tốc của chất điểm giảm, từ t = 2 trở đi thì vận tốc của chất điểm tăng

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 6 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo đặc sắc thuộc chuyên mục đề thi toán 12 trên nền tảng toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 6 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo: Tổng quan

Bài tập 6 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn một bên, giới hạn tại một điểm và các tính chất của giới hạn để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải toán là yếu tố then chốt để hoàn thành tốt bài tập này.

Nội dung bài tập 6 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo

Bài tập 6 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh tính giới hạn của hàm số tại một điểm cho trước. Các hàm số có thể là hàm đa thức, hàm hữu tỉ, hoặc các hàm số khác. Để giải quyết bài tập này, học sinh cần:

  • Xác định đúng dạng hàm số và phương pháp tính giới hạn phù hợp.
  • Áp dụng các quy tắc tính giới hạn, chẳng hạn như quy tắc cộng, trừ, nhân, chia giới hạn.
  • Sử dụng các kỹ thuật biến đổi đại số để đơn giản hóa biểu thức và tìm ra giới hạn.

Phương pháp giải bài tập 6 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo

Có nhiều phương pháp để giải bài tập về giới hạn, tùy thuộc vào dạng hàm số và yêu cầu của bài toán. Một số phương pháp phổ biến bao gồm:

  1. Phương pháp trực tiếp: Thay trực tiếp giá trị của x vào hàm số để tính giới hạn. Phương pháp này chỉ áp dụng được khi hàm số xác định tại điểm đó.
  2. Phương pháp phân tích thành nhân tử: Phân tích tử số và mẫu số thành nhân tử để rút gọn biểu thức và loại bỏ các yếu tố gây khó khăn cho việc tính giới hạn.
  3. Phương pháp nhân liên hợp: Nhân tử số và mẫu số với biểu thức liên hợp để loại bỏ các căn thức hoặc biểu thức phức tạp.
  4. Phương pháp sử dụng định lý giới hạn: Áp dụng các định lý giới hạn đã học để tính giới hạn của các hàm số đặc biệt.

Ví dụ minh họa giải bài tập 6 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo

Ví dụ: Tính limx→2 (x2 - 4) / (x - 2)

Giải:

Ta có: (x2 - 4) / (x - 2) = (x - 2)(x + 2) / (x - 2) = x + 2 (với x ≠ 2)

Do đó: limx→2 (x2 - 4) / (x - 2) = limx→2 (x + 2) = 2 + 2 = 4

Lưu ý khi giải bài tập về giới hạn

Khi giải bài tập về giới hạn, học sinh cần lưu ý một số điểm sau:

  • Kiểm tra xem hàm số có xác định tại điểm cần tính giới hạn hay không.
  • Chọn phương pháp giải phù hợp với dạng hàm số.
  • Thực hiện các phép biến đổi đại số một cách cẩn thận và chính xác.
  • Kiểm tra lại kết quả để đảm bảo tính đúng đắn.

Bài tập luyện tập

Để củng cố kiến thức và kỹ năng giải bài tập về giới hạn, học sinh có thể tự giải các bài tập sau:

  • Tính limx→1 (x3 - 1) / (x - 1)
  • Tính limx→0 sin(x) / x
  • Tính limx→∞ (2x + 1) / (x - 3)

Kết luận

Bài tập 6 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh hiểu sâu hơn về khái niệm giới hạn và các phương pháp tính giới hạn. Việc nắm vững kiến thức và kỹ năng giải bài tập này sẽ là nền tảng vững chắc cho việc học tập các chương trình Toán học nâng cao.

Tài liệu, đề thi và đáp án Toán 12