Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 5 trang 42 SGK Toán 12 tập 2 theo chương trình Chân trời sáng tạo.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong học tập.
Viết phương trình mặt phẳng (left( alpha right)) đi qua hai điểm (Aleft( {1;0;1} right)), (Bleft( {5;2;3} right)) và vuông góc với mặt phẳng (left( beta right):2x - y + z - 7 = 0.)
Đề bài
Viết phương trình mặt phẳng \(\left( \alpha \right)\) đi qua hai điểm \(A\left( {1;0;1} \right)\), \(B\left( {5;2;3} \right)\) và vuông góc với mặt phẳng \(\left( \beta \right):2x - y + z - 7 = 0\).
Phương pháp giải - Xem chi tiết
Mặt phẳng \(\left( \alpha \right)\) đi qua \(A\), \(B\) nên có một vectơ chỉ phương là \(\overrightarrow {AB} .\)
Mặt phẳng \(\left( \alpha \right)\) vuông góc với mặt phẳng \(\left( \beta \right)\), nên vectơ pháp tuyến \(\vec n\) của mặt phẳng \(\left( \beta \right)\) là một vectơ chỉ phương của mặt phẳng \(\left( \alpha \right)\). Do đó \(\left( \alpha \right)\) có một cặp vectơ chỉ phương là \(\overrightarrow {AB} \) và \(\vec n\). Suy ra một vectơ pháp tuyến của \(\left( \alpha \right)\) là \(\overrightarrow {{n_{\left( \alpha \right)}}} = \left[ {\overrightarrow {AB} ,\vec n} \right]\). Từ đó viết được phương trình mặt phẳng \(\left( \alpha \right).\)
Lời giải chi tiết
Mặt phẳng \(\left( \alpha \right)\) đi qua \(A\left( {1;0;1} \right)\), \(B\left( {5;2;3} \right)\) nên có một vectơ chỉ phương là \(\overrightarrow {AB} \left( {4;2;2} \right)\).
Mặt phẳng \(\left( \alpha \right)\) vuông góc với mặt phẳng \(\left( \beta \right)\), nên vectơ pháp tuyến \(\vec n\left( {2; - 1;1} \right)\) của mặt phẳng \(\left( \beta \right)\) là một vectơ chỉ phương của mặt phẳng \(\left( \alpha \right)\).
Như vậy \(\left( \alpha \right)\) có một cặp vectơ chỉ phương là \(\overrightarrow {AB} \left( {4;2;2} \right)\) và \(\vec n\left( {2; - 1;1} \right)\). Suy ra một vectơ pháp tuyến của mặt phẳng \(\left( \alpha \right)\) là
\(\overrightarrow {{n_{\left( \alpha \right)}}} = \left[ {\overrightarrow {AB} ,\vec n} \right] = \left( {2.1 - 2.\left( { - 1} \right);2.2 - 4.1;4.\left( { - 1} \right) - 2.2} \right) = \left( {4;0; - 8} \right)\).
Vậy phương trình mặt phẳng \(\left( \alpha \right)\) là
\(4\left( {x - 1} \right) + 0\left( {y - 0} \right) - 8\left( {z - 1} \right) = 0 \Leftrightarrow 4x - 8z + 4 = 0 \Leftrightarrow x - 2z + 1 = 0\).
Bài tập 5 trang 42 SGK Toán 12 tập 2 thuộc chương trình Chân trời sáng tạo tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của một đại lượng. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài tập 5 thường bao gồm các dạng bài sau:
Để giúp bạn hiểu rõ hơn về cách giải bài tập 5 trang 42, chúng tôi sẽ cung cấp lời giải chi tiết cho từng câu hỏi. Dưới đây là ví dụ về lời giải cho một câu hỏi thường gặp:
Đề bài: Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.
Lời giải:
Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:
Ngoài SGK Toán 12 tập 2, bạn có thể tham khảo thêm các tài liệu sau để học toán hiệu quả hơn:
Bài tập 5 trang 42 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm và ứng dụng của nó. Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong việc giải quyết các bài toán tương tự.