Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 5 trang 60 SGK Toán 12 tập 2 theo chương trình Chân trời sáng tạo.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập hiệu quả, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Xét vị trí tương đối giữa các cặp đường thẳng sau: a) \(d:\left\{ \begin{array}{l}x = 1 + t\\y = - 1 + 2t\\z = - 2 + t\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = 2 + 2t'\\y = 3 + 4t'\\z = 2t'\end{array} \right.\) b) \(d:\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z - 3}}{2}\) và \(d':\frac{{x - 2}}{1} = \frac{{y - 1}}{5} = \frac{{z - 1}}{1}\).
Đề bài
Xét vị trí tương đối giữa các cặp đường thẳng sau:
a) \(d:\left\{ \begin{array}{l}x = 1 + t\\y = - 1 + 2t\\z = - 2 + t\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = 2 + 2t'\\y = 3 + 4t'\\z = 2t'\end{array} \right.\)
b) \(d:\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z - 3}}{2}\) và \(d':\frac{{x - 2}}{1} = \frac{{y - 1}}{5} = \frac{{z - 1}}{1}\).
Phương pháp giải - Xem chi tiết
Viết các vectơ chỉ phương \(\vec a\) và \(\vec a'\) của \(d\) và \(d'\).
Trường hợp hai vectơ \(\vec a\) và \(\vec a'\) cùng phương, lấy một điểm \(M\) thuộc \(d\). Nếu điểm đó không nằm trên \(d'\) thì hai đường thẳng đó song song với nhau; ngược lại, hai đường thẳng đó trùng nhau.
Trường hợp hai vectơ \(\vec a\) và \(\vec a'\) không cùng phương, lấy một điểm \(M\) thuộc \(d\) và một điểm \(M'\) thuộc \(d'\), sau đó tính tích hỗn hợp \(\left[ {\vec a,\vec a} \right].\overrightarrow {MM'} \). Nếu tích hỗn hợp đó bằng \(0\), hai đường thẳng đó cắt nhau; ngược lại, hai đường thẳng đó chéo nhau.
Lời giải chi tiết
a) Đường thẳng \(d\) có vectơ chỉ phương là \(\vec a = \left( {1;2;1} \right)\).
Đường thẳng \(d'\) có vectơ chỉ phương là \(\vec a' = \left( {2;4;2} \right)\).
Do \(\frac{1}{2} = \frac{2}{4} = \frac{1}{2}\) nên \(\vec a\) và \(\vec a'\) cùng phương, suy ra \(d\) và \(d'\) hoặc song song hoặc trùng nhau.
Lấy điểm \(M\left( {1; - 1; - 2} \right)\) thuộc \(d\).
Thay hoành độ điểm \(M\) vào phương trình \(x = 2 + 2t'\) ta có \(1 = 2 + 2t' \Rightarrow t' = - \frac{1}{2}\).
Thay \(y = - 1\) và \(t' = - \frac{1}{2}\) vào phương trình \(y = 3 + 4t'\), ta thấy phương trình không thoả mãn, do \(3 + 4.\frac{{ - 1}}{2} = 1 \ne - 1\).
Vậy điểm \(M\) không thuộc \(d'\). Suy ra \(d\parallel d'\).
b) Đường thẳng \(d\) có vectơ chỉ phương là \(\vec a = \left( {1;2;2} \right)\).
Đường thẳng \(d'\) có vectơ chỉ phương là \(\vec a' = \left( {1;5;1} \right)\).
Do \(\frac{1}{1} \ne \frac{2}{5}\), nên \(\vec a\) và \(\vec a'\) không cùng phương. Suy ra \(d\) và \(d'\) hoặc chéo nhau hoặc cắt nhau.
Lấy điểm \(M\left( {1;2;3} \right)\) thuộc \(d\) và \(M'\left( {2;1;1} \right)\) thuộc \(d'\).
Ta có \(\left[ {\vec a,\vec a'} \right] = \left( { - 8;1;3} \right)\) và \(\overrightarrow {MM'} = \left( {1; - 1; - 2} \right)\).
Suy ra \(\left[ {\vec a,\vec a'} \right].\overrightarrow {MM'} = \left( { - 8} \right).1 + 1.\left( { - 1} \right) + 3.\left( { - 2} \right) = - 15 \ne 0.\)
Vậy hai đường thẳng \(d\) và \(d'\) chéo nhau.
Bài tập 5 trang 60 SGK Toán 12 tập 2 chương trình Chân trời sáng tạo thuộc chủ đề về đạo hàm của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế, cụ thể là tìm đạo hàm của hàm số và sử dụng đạo hàm để khảo sát hàm số.
Bài tập 5 bao gồm các câu hỏi nhỏ, yêu cầu học sinh:
Để giải quyết bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Dưới đây là lời giải chi tiết cho từng câu hỏi của bài tập 5:
f'(x) = 3x^2 - 6x + 2
Để xác định khoảng đồng biến, nghịch biến, ta xét dấu của đạo hàm f'(x).
f'(x) = 0 khi 3x^2 - 6x + 2 = 0. Giải phương trình này, ta được x = (3 ± √3)/3.
Khoảng đồng biến: (-∞, (3 - √3)/3) và ((3 + √3)/3, +∞)
Khoảng nghịch biến: ((3 - √3)/3, (3 + √3)/3)
Hàm số đạt cực đại tại x = (3 - √3)/3, giá trị cực đại là f((3 - √3)/3) = ...
Hàm số đạt cực tiểu tại x = (3 + √3)/3, giá trị cực tiểu là f((3 + √3)/3) = ...
Để hiểu rõ hơn về cách giải bài tập về đạo hàm, chúng ta cùng xem xét một ví dụ khác:
Cho hàm số g(x) = sin(2x). Hãy tính đạo hàm g'(x).
Áp dụng quy tắc đạo hàm của hàm hợp, ta có g'(x) = 2cos(2x).
Bài tập 5 trang 60 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin hơn khi giải quyết các bài tập tương tự.
Chúc bạn học tập tốt!