Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 1 - Chân trời sáng tạo. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài tập 4 trang 83, từ đó nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tiết kiệm thời gian và đạt kết quả tốt nhất.
Một giống cây xoan đào được trồng tại hai địa điểm A và B. Người ta thống kê đường kính thân của một số cây xoan đào 5 năm tuổi ở bảng sau: a) Hãy so sánh đường kính trung bình của thân cây xoan đào trồng tại địa điểm A và địa điểm B. b) Nếu so sánh theo độ lệch chuẩn thì cây trồng tại địa điểm nào có đường kính đồng đều hơn?
Đề bài
Một giống cây xoan đào được trồng tại hai địa điểm A và B. Người ta thống kê đường kính thân của một số cây xoan đào 5 năm tuổi ở bảng sau:
a) Hãy so sánh đường kính trung bình của thân cây xoan đào trồng tại địa điểm A và địa điểm B. b) Nếu so sánh theo độ lệch chuẩn thì cây trồng tại địa điểm nào có đường kính đồng đều hơn?
Phương pháp giải - Xem chi tiết
a) Tính giá trị đại diện
Số trung bình: \(\overline x = \frac{1}{n}({n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k})\)
b) Phương sai của mẫu số liệu ghép nhóm, kí hiệu \({S^2}\), được tính bởi công thức:
\({S^2} = \frac{1}{n}[{n_1}{({c_1} - \overline x )^2} + {n_2}{({c_2} - \overline x )^2} + ... + {n_k}{({c_k} - \overline x )^2}]\)
Trong đó: \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu
\(\overline x \) là số trung bình
Độ lệch chuẩn của mẫu số liệu ghép nhóm, kí hiệu \(S\), là căn bậc hai số học của phương sai.
Lời giải chi tiết
a)
- Xét mẫu số liệu của địa điểm A:
Số trung bình: \({\overline x _A} = \frac{{25.31 + 38.33 + 20.35 + 10.37 + 7.39}}{{100}} = 33,72\)
- Xét mẫu số liệu của địa điểm B:
\({\overline x _B} = \frac{{22.31 + 27.33 + 19.35 + 18.37 + 14.39}}{{100}} = 34,5\)
Đường kính trung bình của thân cây xoan đào trồng tại địa điểm A nhỏ hơn tại địa điểm B.
b) - Xét mẫu số liệu của địa điểm A:
\({\sigma _A} = \sqrt {\frac{{{{25.31}^2} + {{38.33}^2} + {{20.35}^2} + {{10.37}^2} + {{7.39}^2}}}{{100}} - 33,{{72}^2}} = 2,32\)
- Xét mẫu số liệu của địa điểm B:
\({\sigma _B} = \sqrt {\frac{{{{22.31}^2} + {{27.33}^2} + {{19.35}^2} + {{18.37}^2} + {{14.39}^2}}}{{100}}} = 2,7\)
Vậy cây trồng tại địa điểm A có đường kính đồng đều hơn
Bài tập 4 trang 83 SGK Toán 12 tập 1 - Chân trời sáng tạo thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn một bên, giới hạn tại một điểm và các tính chất của giới hạn để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là vô cùng quan trọng để đạt kết quả tốt trong các kỳ thi sắp tới.
Bài tập 4 thường bao gồm các dạng bài sau:
Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài tập 4 trang 83, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi. Lưu ý rằng, trong quá trình giải bài tập, cần phải:
Giả sử bài tập yêu cầu tính giới hạn của hàm số f(x) = (x^2 - 1) / (x - 1) khi x tiến tới 1. Ta có thể giải bài tập này như sau:
f(x) = (x^2 - 1) / (x - 1) = (x - 1)(x + 1) / (x - 1) = x + 1 (với x ≠ 1)
lim (x→1) f(x) = lim (x→1) (x + 1) = 1 + 1 = 2
Giả sử bài tập yêu cầu tính giới hạn của hàm số g(x) = (√(x+1) - √x) khi x tiến tới 0. Ta có thể giải bài tập này bằng cách nhân liên hợp:
g(x) = (√(x+1) - √x) * (√(x+1) + √x) / (√(x+1) + √x) = (x + 1 - x) / (√(x+1) + √x) = 1 / (√(x+1) + √x)
lim (x→0) g(x) = lim (x→0) 1 / (√(x+1) + √x) = 1 / (√(0+1) + √0) = 1 / (1 + 0) = 1
Để giải bài tập về giới hạn một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:
Để củng cố kiến thức và kỹ năng giải bài tập về giới hạn, bạn có thể tự giải các bài tập sau:
Bài tập 4 trang 83 SGK Toán 12 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải bài tập về giới hạn. Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã trình bày, các bạn học sinh sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.