Logo Header
  1. Môn Toán
  2. Giải bài tập 5 trang 65 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 5 trang 65 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 5 trang 65 SGK Toán 12 tập 2 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài tập 5 trang 65 SGK Toán 12 tập 2 theo chương trình Chân trời sáng tạo.

Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và giúp bạn nắm vững kiến thức Toán học.

Người ta muốn thiết kế một bồn chứa khí hoá lỏng hình cầu bằng phần mềm 3D. Cho biết phương trình bề mặt của bồn chứa là (left( S right):{left( {x - 6} right)^2} + {left( {y - 6} right)^2} + {left( {z - 6} right)^2} = 25). Phương trình mặt phẳng chứa nắp là (left( P right):z = 10). a) Tìm tâm và bán kính của bồn chứa. b) Tính khoảng cách từ tâm bồn chứa đến mặt phẳng của nắp.

Đề bài

Người ta muốn thiết kế một bồn chứa khí hoá lỏng hình cầu bằng phần mềm 3D. Cho biết phương trình bề mặt của bồn chứa là \(\left( S \right):{\left( {x - 6} \right)^2} + {\left( {y - 6} \right)^2} + {\left( {z - 6} \right)^2} = 25\). Phương trình mặt phẳng chứa nắp là \(\left( P \right):z = 10\).

a) Tìm tâm và bán kính của bồn chứa.

b) Tính khoảng cách từ tâm bồn chứa đến mặt phẳng của nắp.

Giải bài tập 5 trang 65 SGK Toán 12 tập 2 - Chân trời sáng tạo 1

Phương pháp giải - Xem chi tiếtGiải bài tập 5 trang 65 SGK Toán 12 tập 2 - Chân trời sáng tạo 2

a) Dựa vào phương trình mặt cầu, xác định tâm \(I\) và bán kính của bồn chứa.

b) Sử dụng công thức tính khoảng cách từ điểm đến mặt phẳng để tính khoảng cách từ tâm bồn chứa \(I\) đến mặt phẳng \(\left( P \right)\) chứa nắp.

Lời giải chi tiết

a) Phương trình bề mặt bồn chứa là \(\left( S \right):{\left( {x - 6} \right)^2} + {\left( {y - 6} \right)^2} + {\left( {z - 6} \right)^2} = 25\), nên bồn chứa là một hình cầu có tâm \(I\left( {6;6;6} \right)\) và bán kính \(R = \sqrt {25} = 5\).

b) Khoảng cách từ tâm bồn chứa \(I\left( {6;6;6} \right)\) đến mặt phẳng chứa nắp \(\left( P \right):z - 10 = 0\) là \(d = \frac{{\left| {0.6 + 0.6 + 1.6 - 10} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} }} = 4\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 5 trang 65 SGK Toán 12 tập 2 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng toán math. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 5 trang 65 SGK Toán 12 tập 2 - Chân trời sáng tạo: Tổng quan

Bài tập 5 trang 65 SGK Toán 12 tập 2 chương trình Chân trời sáng tạo thuộc chủ đề về đạo hàm của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế, cụ thể là tìm đạo hàm của hàm số và phân tích các tính chất của đạo hàm.

Nội dung bài tập 5 trang 65 SGK Toán 12 tập 2 - Chân trời sáng tạo

Bài tập 5 bao gồm các câu hỏi nhỏ, yêu cầu học sinh:

  • Tính đạo hàm của các hàm số đã cho.
  • Xác định khoảng đồng biến, nghịch biến của hàm số dựa vào dấu của đạo hàm.
  • Tìm cực trị của hàm số.

Phương pháp giải bài tập 5 trang 65 SGK Toán 12 tập 2 - Chân trời sáng tạo

Để giải quyết bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Quy tắc tính đạo hàm: Nắm vững các quy tắc tính đạo hàm của các hàm số cơ bản (hàm số đa thức, hàm số lượng giác, hàm số mũ, hàm số logarit) và quy tắc tính đạo hàm của hàm hợp.
  2. Ý nghĩa của đạo hàm: Hiểu rõ ý nghĩa hình học và vật lý của đạo hàm. Đạo hàm của hàm số tại một điểm biểu diễn hệ số góc của tiếp tuyến với đồ thị hàm số tại điểm đó.
  3. Điều kiện cần và đủ để hàm số đồng biến, nghịch biến: Hàm số đồng biến trên một khoảng nếu đạo hàm của nó dương trên khoảng đó. Hàm số nghịch biến trên một khoảng nếu đạo hàm của nó âm trên khoảng đó.
  4. Điều kiện để hàm số có cực trị: Hàm số có cực trị tại một điểm nếu đạo hàm của nó đổi dấu khi đi qua điểm đó.

Lời giải chi tiết bài tập 5 trang 65 SGK Toán 12 tập 2 - Chân trời sáng tạo

Câu a:

Cho hàm số f(x) = x3 - 3x2 + 2. Tính f'(x).

Lời giải:

f'(x) = 3x2 - 6x

Câu b:

Cho hàm số g(x) = sin(2x). Tính g'(x).

Lời giải:

g'(x) = 2cos(2x)

Câu c:

Cho hàm số h(x) = ex + ln(x). Tính h'(x).

Lời giải:

h'(x) = ex + 1/x

Ví dụ minh họa ứng dụng của đạo hàm

Đạo hàm được ứng dụng rộng rãi trong nhiều lĩnh vực của đời sống và khoa học. Ví dụ, trong vật lý, đạo hàm được sử dụng để tính vận tốc và gia tốc của một vật thể. Trong kinh tế, đạo hàm được sử dụng để tính chi phí biên và doanh thu biên.

Luyện tập thêm

Để củng cố kiến thức về đạo hàm, bạn có thể luyện tập thêm các bài tập sau:

  • Bài tập 1: Tính đạo hàm của hàm số y = x4 - 5x2 + 3.
  • Bài tập 2: Tìm khoảng đồng biến, nghịch biến của hàm số y = x3 - 3x + 1.
  • Bài tập 3: Tìm cực trị của hàm số y = x2 - 4x + 5.

Kết luận

Bài tập 5 trang 65 SGK Toán 12 tập 2 chương trình Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả mà giaitoan.edu.vn cung cấp, bạn sẽ tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 12