Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 11 trang 29 SGK Toán 12 tập 2 theo chương trình Chân trời sáng tạo.
Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và giúp bạn nắm vững kiến thức Toán học.
Cho (D) là hình phẳng giới hạn bởi đồ thị hàm số (y = sqrt {x + 1} ), trục tung, trục hoành và đường thẳng (x = 2). Thể tích của khối tròn xoay khi quay (D) quanh trục hoành bằng A. (6pi ) B. (2pi ) C. (3pi ) D. (4pi )
Đề bài
Cho \(D\) là hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt {x + 1} \), trục tung, trục hoành và đường thẳng \(x = 2\). Thể tích của khối tròn xoay khi quay \(D\) quanh trục hoành bằng
A. \(6\pi \)
B. \(2\pi \)
C. \(3\pi \)
D. \(4\pi \)
Phương pháp giải - Xem chi tiết
Thể tích của khối tròn xoay khi quay hình phẳng \(D\) giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục hoành và các đường thẳng \(x = a\), \(x = b\), quanh trục \(Ox\) là \(V = \pi \int\limits_a^b {{f^2}\left( x \right)dx} \)
Lời giải chi tiết
Thể tích của khối tròn xoay khi quay hình phẳng \(D\) giới hạn bởi đồ thị hàm số \(y = \sqrt {x + 1} \), trục tung (\(x = 0\)), trục hoành và đường thẳng \(x = 2\) là:
\(V = \pi \int\limits_0^2 {{{\left( {\sqrt {x + 1} } \right)}^2}dx} = \pi \int\limits_0^2 {\left( {x + 1} \right)dx} = \pi \left. {\left( {\frac{{{x^2}}}{2} + x} \right)} \right|_0^2 = 4\pi \).
Đáp án đúng là D.
Bài tập 11 trang 29 SGK Toán 12 tập 2 thuộc chương trình Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của đại lượng. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài tập 11 thường có dạng như sau: Một vật thể chuyển động theo một quỹ đạo được mô tả bởi hàm số vị trí s(t). Yêu cầu là tìm vận tốc và gia tốc của vật thể tại một thời điểm cụ thể, hoặc xác định thời điểm vật thể đạt vận tốc cực đại/cực tiểu.
Ví dụ: Một vật thể chuyển động theo hàm số vị trí s(t) = t3 - 6t2 + 9t + 2 (trong đó s tính bằng mét và t tính bằng giây). Hãy tìm vận tốc và gia tốc của vật thể tại thời điểm t = 2 giây.
Giải:
Vậy, tại thời điểm t = 2 giây, vận tốc của vật thể là -3 m/s và gia tốc là 0 m/s2.
Ngoài SGK Toán 12 tập 2, bạn có thể tham khảo thêm các tài liệu sau:
Giải bài tập 11 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo đòi hỏi sự hiểu biết vững chắc về đạo hàm và các ứng dụng của nó. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết các bài toán tương tự. Chúc bạn học tập tốt!