Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 2 trang 75 SGK Toán 12 tập 2 theo chương trình Chân trời sáng tạo.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi đã biên soạn lời giải một cách dễ hiểu, kèm theo các bước giải chi tiết để giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Cho hai biến cố (A) và (B) có (Pleft( A right) = 0,4); (Pleft( B right) = 0,8) và (Pleft( {A|bar B} right) = 0,5). Tính (Pleft( {Abar B} right)) và (Pleft( {A|B} right)).
Đề bài
Cho hai biến cố \(A\) và \(B\) có \(P\left( A \right) = 0,4\); \(P\left( B \right) = 0,8\) và \(P\left( {A|\bar B} \right) = 0,5\). Tính \(P\left( {A\bar B} \right)\) và \(P\left( {A|B} \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức tính xác suất có điều kiện \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\).
Lời giải chi tiết
Ta có \(P\left( {\bar B} \right) = 1 - P\left( B \right) = 1 - 0,8 = 0,2\).
Do \(P\left( {A|\bar B} \right) = \frac{{P\left( {A\bar B} \right)}}{{P\left( {\bar B} \right)}}\) nên \(P\left( {A\bar B} \right) = P\left( {A|\bar B} \right).P\left( {\bar B} \right) = 0,5.0,2 = 0,1\).
Ta có \(A\bar B\) và \(AB\) là các biến cố xung khắc và \(A\bar B \cup AB = A\) nên \(P\left( {AB} \right) = P\left( A \right) - P\left( {A\bar B} \right) = 0,4 - 0,1 = 0,3\).
Suy ra \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,3}}{{0,8}} = \frac{{3}}{{8}}\).
Bài tập 2 trang 75 SGK Toán 12 tập 2 thuộc chương trình Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của một đại lượng. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài tập 2 thường bao gồm các dạng bài sau:
Để giúp bạn hiểu rõ hơn về cách giải bài tập 2 trang 75, chúng tôi sẽ trình bày lời giải chi tiết cho từng dạng bài:
Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Lời giải:
f'(x) = 3x2 + 4x - 5
Ví dụ: Tìm cực trị của hàm số f(x) = x3 - 3x2 + 2.
Lời giải:
Ví dụ: Khảo sát sự biến thiên của hàm số f(x) = x4 - 4x2 + 3.
Lời giải:
(Tương tự như dạng 2, tính đạo hàm, giải phương trình, xét dấu đạo hàm và kết luận khoảng đồng biến, nghịch biến)
Ví dụ: Một vật chuyển động với vận tốc v(t) = 3t2 - 6t + 2 (m/s). Tính gia tốc của vật tại thời điểm t = 1s.
Lời giải:
Gia tốc a(t) = v'(t) = 6t - 6
a(1) = 6(1) - 6 = 0 (m/s2)
Để giải bài tập 2 trang 75 một cách hiệu quả, bạn nên:
Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong việc giải bài tập 2 trang 75 SGK Toán 12 tập 2 - Chân trời sáng tạo. Chúc bạn học tập tốt!