Logo Header
  1. Môn Toán
  2. Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo

Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo

Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo

Chào mừng bạn đến với bài học về lý thuyết Phương trình mặt cầu trong chương trình Toán 12 Chân trời sáng tạo. Bài học này sẽ cung cấp cho bạn những kiến thức cơ bản và quan trọng nhất về phương trình mặt cầu, giúp bạn tự tin giải quyết các bài toán liên quan.

Chúng ta sẽ cùng nhau tìm hiểu về định nghĩa, phương trình chính tắc, phương trình tổng quát của mặt cầu, cũng như các ứng dụng thực tế của kiến thức này.

1. Phương trình mặt cầu trong không gian Khái niệm mặt cầu Trong không gian, cho điểm I và số dương R. Mặt cầu tâm I, bán kính R, kí hiệu S(I;R) là tập hợp các điểm M trong không gian thỏa mãn IM = R. Đoạn thẳng nối hai điểm thuộc mặt cầu và đi qua tâm I là đường kính mặt cầu.

1. Phương trình mặt cầu trong không gian

Khái niệm mặt cầu

Trong không gian, cho điểm I và số dương R. Mặt cầu tâm I, bán kính R, kí hiệu S(I;R) là tập hợp các điểm M trong không gian thỏa mãn IM = R. Đoạn thẳng nối hai điểm thuộc mặt cầu và đi qua tâm I là đường kính mặt cầu.

Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo 1

Chú ý: Cho mặt cầu S(I;R).

Nếu IM = R thì M nằm trên mặt cầu.

Nếu IM < R thì M nằm ngoài mặt cầu.

Nếu IM > R thì M nằm ngoài mặt cầu.

Phương trình mặt cầu

Trong không gian Oxyz, mặt cầu (S) tâm I(a;b;c) bán kính R có phương trình

\({(x - a)^2} + {(y - b)^2} + {(z - c)^2} = {R^2}\)

Nhận xét: Phương trình \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) với \({a^2} + {b^2} + {c^2} - d > 0\) là phương trình của mặt cầu tâm I(a;b;c) và bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).

Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo 2

Ví dụ 1: Viết phương trình mặt cầu (S):

a) Có tâm I(1;2;3), bán kính R = 5.

b) Có đường kính AB với A(1;3;7) và B(3;5;1).

c) Có tâm A(1;0;2) và đi qua điểm B(2;4;1).

Giải:

a) Mặt cầu (S) có phương trình \({(x - 1)^2} + {(y - 2)^2} + {(z - 3)^3} = 25\).

b) Mặt cầu (S) có đường kính AB nên có tâm J(2;4;4) là trung điểm AB và bán kính R = JA = \(\sqrt {11} \).

Vậy (S) có phương trình \({(x - 2)^2} + {(y - 4)^2} + {(z - 4)^2} = 11\).

c) Mặt cầu (S) có tâm A(1;0;-2) và đi qua điểm B(2;4;1) nên có bán kính R = AB = \(\sqrt {26} \).

Vậy (S) có phương trình \({(x - 1)^2} + {y^2} + {(z + 2)^2} = 26\).

Ví dụ 2: Xác định tâm và bán kính mặt cầu có phương trình:

a) (S): \({(x - 3)^2} + {(y - 7)^2} + {(z + 1)^2} = 81\).

b) (S’): \({x^2} + {y^2} + {z^2} = 4\).

Giải:

a) Mặt cầu (S) có tâm I(3;7;-1) và bán kính R = \(\sqrt {81} \) = 9.

b) Mặt cầu (S’) có tâm O(0;0;0) và bán kính R’ = \(\sqrt 4 \) = 2.

Ví dụ 3: Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính mặt cầu đó.

a) \({x^2} + {y^2} + {z^2} + 8x - 6y + 2z - 10 = 0\).

b) \({x^2} + {y^2} + {z^2} + x + y - 6z + 33 = 0\).

Giải:

a) Phương trình \({x^2} + {y^2} + {z^2} + 8x - 6y + 2z - 10 = 0\) có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) với \(a = - 4;b = 3;c = - 1;d = - 10\).

Ta có \({a^2} + {b^2} + {c^2} - d = 16 + 9 + 1 + 10 = 36 > 0\).

Suy ra phương trình đã cho là phương trình mặt cầu tâm I(-4;3;-1), bán kính R = 6.

b) Phương trình \({x^2} + {y^2} + {z^2} + x + y - 6z + 33 = 0\) có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) với \(a = - \frac{1}{2};b = - \frac{1}{2};c = 3;d = 33\).

Ta có \({a^2} + {b^2} + {c^2} - d = \frac{1}{4} + \frac{1}{4} + 9 - 33 = - \frac{{47}}{2} < 0\).

Suy ra phương trình đã cho không phải phương trình mặt cầu.

2. Vận dụng của phương trình mặt cầu

Ví dụ: Công nghệ hỗ trợ trọng tài VAR (Video Assisstant Referee) thiết lập một hệ tọa độ Oxyz để theo dõi vị trí của quả bóng M. Cho biết M đang nằm trên mặt sân có phương trình z = 0, đồng thời thuộc mặt cầu (S): \({(x - 32)^2} + {(y - 50)^2} + {(z - 10)^2} = 109\) (đơn vị độ dài tính theo mét).

a) Tìm tọa độ tâm I và bán kính R của mặt cầu (S).

b) Tìm tọa độ hình chiếu vuông góc J của tâm I trên mặt sân.

c) Tính khoảng cách từ vị trí M của quả bóng đến điểm J.

Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo 3

Giải:

Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo 4

Mặt cầu (S) có phương trình \({(x - 32)^2} + {(y - 50)^2} + {(z - 10)^2} = 109\) nên có tâm I(32;50;0) và bán kính \(R = \sqrt {109} \).

b) Trong không gian Oxyz, mặt sân có phương trình z = 0 trùng với mặt phẳng tọa độ (Oxy), suy ra hình chiếu vuông góc của điểm I(32;50;10) xuống mặt sân có tọa độ J(32;50;0).

c) Trong tam giác vuông IJM, ta có IJ = 10, IM = R, suy ra

\(JM = \sqrt {I{M^2} - I{J^2}} = \sqrt {109 - 100} = 3\).

Vậy khoảng cách từ vị trí M của quả bóng đến điểm J là 3m.

Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo 5

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo

Phương trình mặt cầu là một trong những chủ đề quan trọng trong chương trình Hình học không gian lớp 12. Việc nắm vững lý thuyết và kỹ năng giải bài tập liên quan đến phương trình mặt cầu là điều cần thiết để đạt kết quả tốt trong các kỳ thi.

1. Định nghĩa mặt cầu

Mặt cầu là tập hợp tất cả các điểm trong không gian có khoảng cách đến một điểm cố định (gọi là tâm) bằng một độ dài không đổi (gọi là bán kính). Kí hiệu: S(I; R), trong đó I là tâm và R là bán kính.

2. Phương trình chính tắc của mặt cầu

Trong không gian với hệ tọa độ Oxyz, phương trình chính tắc của mặt cầu có tâm I(a; b; c) và bán kính R được viết như sau:

(x - a)² + (y - b)² + (z - c)² = R²

3. Phương trình tổng quát của mặt cầu

Phương trình tổng quát của mặt cầu có dạng:

x² + y² + z² - 2ax - 2by - 2cz + d = 0

Trong đó, tâm của mặt cầu là I(a; b; c) và bán kính R được tính bởi:

R = √(a² + b² + c² - d)

Điều kiện để phương trình trên là phương trình của một mặt cầu là: a² + b² + c² - d > 0

4. Các dạng bài tập thường gặp

  • Bài tập 1: Xác định tâm và bán kính của mặt cầu khi cho phương trình.
  • Bài tập 2: Viết phương trình mặt cầu khi biết tâm và bán kính.
  • Bài tập 3: Xác định điều kiện để phương trình là phương trình của một mặt cầu.
  • Bài tập 4: Tìm giao điểm của mặt cầu và đường thẳng.
  • Bài tập 5: Tìm giao tuyến của hai mặt cầu.

5. Ví dụ minh họa

Ví dụ 1: Tìm tâm và bán kính của mặt cầu có phương trình (x - 1)² + (y + 2)² + (z - 3)² = 4.

Giải: Tâm của mặt cầu là I(1; -2; 3) và bán kính R = √4 = 2.

Ví dụ 2: Viết phương trình mặt cầu có tâm I(0; 0; 0) và bán kính R = 5.

Giải: Phương trình mặt cầu là x² + y² + z² = 25.

6. Mở rộng và ứng dụng

Lý thuyết phương trình mặt cầu có ứng dụng rộng rãi trong nhiều lĩnh vực của toán học và vật lý, như:

  • Hình học không gian: Nghiên cứu các tính chất của mặt cầu và các hình khối liên quan.
  • Vật lý: Mô tả quỹ đạo của các vật thể chuyển động tròn đều.
  • Kỹ thuật: Thiết kế các bề mặt cong trong các công trình xây dựng và máy móc.

7. Luyện tập và củng cố kiến thức

Để nắm vững lý thuyết và kỹ năng giải bài tập về phương trình mặt cầu, bạn nên:

  1. Đọc kỹ sách giáo khoa và tài liệu tham khảo.
  2. Giải nhiều bài tập khác nhau, từ cơ bản đến nâng cao.
  3. Tìm hiểu các phương pháp giải bài tập khác nhau.
  4. Tham gia các diễn đàn và nhóm học tập trực tuyến để trao đổi kiến thức và kinh nghiệm.

8. Tổng kết

Hy vọng bài học này đã cung cấp cho bạn những kiến thức cần thiết về lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo. Chúc bạn học tập tốt và đạt kết quả cao trong các kỳ thi!

Tài liệu, đề thi và đáp án Toán 12