Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 1 - Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn giải bài tập 2 trang 13 một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.
Xét tính đơn điệu và tìm điểm cực trị của các hàm số sau: a) (y = 4{x^3} + 3{x^2}--36x + 6) b) (y = frac{{{x^2} - 2x - 7}}{{x - 4}})
Đề bài
Xét tính đơn điệu và tìm điểm cực trị của các hàm số sau:a) \(y = 4{x^3} + 3{x^2}-36x + 6\)b) \(y = \frac{{{x^2} - 2x - 7}}{{x - 4}}\)
Phương pháp giải - Xem chi tiết
Tìm tập xác định, đạo hàm và lập bảng biến thiên.
Lời giải chi tiết
a) \(y = 4{x^3} + 3{x^2}-36x + 6\)
Tập xác định: \(D = \mathbb{R}\)
\(y' = 12{x^2} + 6x - 36\)
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{3}{2}\\x = - 2\end{array} \right.\)
Bảng biến thiên:
Hàm số đồng biến trên khoảng (\( - \infty \);-2) và (\(\frac{3}{2}\);\( + \infty \)), nghịch biến trên khoảng (-2; \(\frac{3}{2}\))
Hàm số đạt cực đại tại x = -2, \({y_{cd}} = f( - 2) = 58\), đạt cực tiểu tại x = \(\frac{3}{2}\), \({y_{ct}} = f(\frac{3}{2}) = - \frac{{111}}{4}\)
b) \(y = \frac{{{x^2} - 2x - 7}}{{x - 4}}\)
Tập xác định: \(D = \mathbb{R}\backslash \{ 4\} \)
\(y' = \frac{{{x^2} - 8x + 15}}{{{x^2} - 8x + 16}}\)
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = 3\end{array} \right.\)
Bảng biến thiên:
Hàm số đồng biến trên khoảng (\( - \infty \);3) và (5;\( + \infty \)), nghịch biến trên khoảng (3;4) và (4;5)
Hàm số đạt cực đại tại x = 3, \({y_{cd}} = f(3) = 4\), đạt cực tiểu tại x = \(5\), \({y_{ct}} = f(5) = 8\)
Bài tập 2 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo thuộc chương trình học về giới hạn của hàm số. Đây là một phần kiến thức nền tảng quan trọng, giúp học sinh hiểu rõ hơn về khái niệm giới hạn và ứng dụng của nó trong việc giải quyết các bài toán thực tế.
Bài tập 2 yêu cầu học sinh tính giới hạn của các hàm số khi x tiến tới một giá trị cụ thể. Các hàm số thường gặp trong bài tập này bao gồm các hàm đa thức, hàm phân thức và các hàm số đặc biệt khác.
Để giải bài tập 2 trang 13, học sinh cần nắm vững các quy tắc tính giới hạn sau:
Đề bài: Tính lim (x2 + 2x + 1) khi x → 2
Giải:
Áp dụng quy tắc giới hạn của một tổng, ta có:
lim (x2 + 2x + 1) = lim x2 + lim 2x + lim 1
Thay x = 2 vào, ta được:
lim x2 = 22 = 4
lim 2x = 2 * 2 = 4
lim 1 = 1
Vậy, lim (x2 + 2x + 1) = 4 + 4 + 1 = 9
Đề bài: Tính lim (x - 1) / (x + 1) khi x → 0
Giải:
Áp dụng quy tắc giới hạn của một thương, ta có:
lim (x - 1) / (x + 1) = (lim (x - 1)) / (lim (x + 1))
Thay x = 0 vào, ta được:
lim (x - 1) = 0 - 1 = -1
lim (x + 1) = 0 + 1 = 1
Vậy, lim (x - 1) / (x + 1) = -1 / 1 = -1
Để củng cố kiến thức về giới hạn, bạn có thể tự giải các bài tập sau:
Bài tập 2 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính giới hạn của hàm số. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn đã có thể tự tin giải quyết bài tập này một cách hiệu quả. Chúc bạn học tập tốt!