Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 1 - Chân trời sáng tạo. Bài viết này sẽ giúp bạn Giải bài tập 7 trang 13 một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.
Đạo hàm f '(x) của hàm số y = f(x) có đồ thị như Hình 12. Xét tính đơn điệu và tìm điểm cực trị của hàm số y = f(x).
Đề bài
Đạo hàm f'(x) của hàm số y = f(x) có đồ thị như Hình 12. Xét tính đơn điệu và tìm điểm cực trị của hàm số y = f(x).
Phương pháp giải - Xem chi tiết
Quan sát đồ thị, xét dấu của f’(x).
Lời giải chi tiết
f’(x) > 0 trên các khoảng (-1;2) và (4;5) nên f’(x) đồng biến trên các khoảng (-1;2) và (4;5).
f’(x) < 0 trên các khoảng (-2;-1) và (2;4) nên f’(x) nghịch biến trên các khoảng (-2;-1) và (2;4).
Ta có:
\(f'(x) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 2\\x = 4\end{array} \right.\)
Vậy f(x) đạt cực tiểu tại x = -1 và x = 4 do f’(x) đổi dấu từ âm sang dương khi đi qua x = -1 và x = 4, đạt cực đại tại x = 2 do f’(x) đổi dấu từ dương sang âm khi đi qua x = 2.
Bài tập 7 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo thuộc chương trình học về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn một bên, giới hạn tại một điểm và các tính chất của giới hạn để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là rất quan trọng để học tốt môn Toán 12.
Bài tập 7 thường bao gồm các dạng bài sau:
Để giải bài tập 7 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo hiệu quả, bạn có thể áp dụng các phương pháp sau:
Ví dụ: Tính giới hạn sau: lim (x^2 - 1) / (x - 1) khi x tiến tới 1.
Giải:
Ta có: lim (x^2 - 1) / (x - 1) = lim (x - 1)(x + 1) / (x - 1) = lim (x + 1) = 1 + 1 = 2.
Để củng cố kiến thức và kỹ năng giải bài tập về giới hạn, bạn có thể luyện tập thêm các bài tập sau:
Việc giải bài tập 7 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo đòi hỏi sự nắm vững kiến thức về giới hạn và kỹ năng giải bài tập. Hy vọng với những hướng dẫn và ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết các bài toán về giới hạn và đạt kết quả tốt trong môn Toán 12.