Logo Header
  1. Môn Toán
  2. Giải bài tập 3 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo

Giải bài tập 3 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo

Giải bài tập 3 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 1 - Chân trời sáng tạo. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài tập 3 trang 18, từ đó nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tiết kiệm thời gian và đạt kết quả tốt nhất.

Tìm giá trị nhỏ nhất của các hàm số sau: a) (y = {x^3} - 3x - 4) trên nửa khoảng [-3;2) b) (y = frac{{3{x^2} - 4x}}{{{x^2} - 1}}) trên khoảng (( - 1; + infty ))

Đề bài

Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:a) \(y = {x^3} - 3x - 4\) trên nửa khoảng [-3;2) b) \(y = \frac{{3{x^2} - 4x}}{{{x^2} - 1}}\) trên khoảng \(( - 1; + \infty )\)

Phương pháp giải - Xem chi tiếtGiải bài tập 3 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo 1

Tìm đạo hàm, lập bảng biến thiên và xác định giá trị nhỏ nhất

Lời giải chi tiết

a) Xét \(y = {x^3} - 3x - 4\) trên nửa khoảng [-3;2)

\(y' = 3{x^2} - 3 = 0 \Rightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\)

Bảng biến thiên:

Giải bài tập 3 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo 2

Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_{[ - 3;2)} y = y( - 3) = - 22\), \(\mathop {\max }\limits_{[ - 3;2)} y = y( - 1) = - 2\).

b) Xét \(y = \frac{{3{x^2} - 4x}}{{{x^2} - 1}}\) trên khoảng \(( - 1; + \infty )\)

Tập xác định: \(D = ( - 1; + \infty )\)

\(y' = \frac{{4{x^2} - 6x + 4}}{{{{({x^2} - 1)}^2}}} > 0, \forall x \in D\)

Bảng biến thiên:

Giải bài tập 3 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo 3

Từ bảng biến thiên, ta thấy hàm số không tồn tại giá trị nhỏ nhất trên khoảng \(( - 1; + \infty )\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 3 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 3 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo: Tổng quan

Bài tập 3 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo thuộc chương trình học về giới hạn của hàm số. Đây là một phần kiến thức quan trọng, nền tảng cho các chương trình học toán cao hơn. Bài tập này yêu cầu học sinh vận dụng các định nghĩa và tính chất của giới hạn để giải quyết các bài toán cụ thể.

Nội dung bài tập 3 trang 18

Bài tập 3 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh tính giới hạn của các hàm số tại một điểm cho trước. Các hàm số có thể là hàm đa thức, hàm hữu tỉ, hoặc các hàm số khác. Để giải quyết bài tập này, học sinh cần nắm vững các phương pháp tính giới hạn sau:

  • Phương pháp trực tiếp: Thay trực tiếp giá trị của x vào hàm số để tính giới hạn.
  • Phương pháp phân tích thành nhân tử: Phân tích tử số và mẫu số thành nhân tử để rút gọn biểu thức và tính giới hạn.
  • Phương pháp nhân liên hợp: Nhân tử số và mẫu số với liên hợp của biểu thức để khử dạng vô định.
  • Phương pháp sử dụng định lý giới hạn: Áp dụng các định lý giới hạn để tính giới hạn của các hàm số phức tạp.

Lời giải chi tiết bài tập 3 trang 18

Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài tập 3 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo:

Câu a)

lim (x→2) (x^2 - 4) / (x - 2)

Giải:

Ta có: (x^2 - 4) / (x - 2) = (x - 2)(x + 2) / (x - 2) = x + 2 (với x ≠ 2)

Vậy, lim (x→2) (x^2 - 4) / (x - 2) = lim (x→2) (x + 2) = 2 + 2 = 4

Câu b)

lim (x→-1) (x^3 + 1) / (x + 1)

Giải:

Ta có: (x^3 + 1) / (x + 1) = (x + 1)(x^2 - x + 1) / (x + 1) = x^2 - x + 1 (với x ≠ -1)

Vậy, lim (x→-1) (x^3 + 1) / (x + 1) = lim (x→-1) (x^2 - x + 1) = (-1)^2 - (-1) + 1 = 1 + 1 + 1 = 3

Câu c)

lim (x→0) sin(x) / x

Giải:

Đây là một giới hạn lượng giác cơ bản. Ta có: lim (x→0) sin(x) / x = 1

Mở rộng kiến thức về giới hạn

Ngoài bài tập 3 trang 18, bạn có thể tìm hiểu thêm về các khái niệm và tính chất của giới hạn sau:

  • Định nghĩa giới hạn: Giới hạn của hàm số f(x) khi x tiến tới a là giá trị L nếu với mọi ε > 0, tồn tại δ > 0 sao cho nếu 0 < |x - a| < δ thì |f(x) - L| < ε.
  • Các tính chất của giới hạn: Giới hạn của tổng, hiệu, tích, thương của các hàm số.
  • Các giới hạn đặc biệt: lim (x→0) sin(x) / x = 1, lim (x→0) (1 - cos(x)) / x = 0.

Luyện tập thêm

Để củng cố kiến thức về giới hạn, bạn có thể luyện tập thêm các bài tập sau:

  • Giải các bài tập trong SGK Toán 12 tập 1 - Chân trời sáng tạo.
  • Tìm kiếm các bài tập giới hạn trên internet.
  • Tham gia các khóa học toán online.

Kết luận

Bài tập 3 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh hiểu rõ hơn về khái niệm và tính chất của giới hạn. Hy vọng với lời giải chi tiết và những kiến thức mở rộng trên, bạn sẽ tự tin hơn trong quá trình học tập môn Toán.

Tài liệu, đề thi và đáp án Toán 12