Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 1 - Chân trời sáng tạo. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài tập 3 trang 18, từ đó nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tiết kiệm thời gian và đạt kết quả tốt nhất.
Tìm giá trị nhỏ nhất của các hàm số sau: a) (y = {x^3} - 3x - 4) trên nửa khoảng [-3;2) b) (y = frac{{3{x^2} - 4x}}{{{x^2} - 1}}) trên khoảng (( - 1; + infty ))
Đề bài
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:a) \(y = {x^3} - 3x - 4\) trên nửa khoảng [-3;2) b) \(y = \frac{{3{x^2} - 4x}}{{{x^2} - 1}}\) trên khoảng \(( - 1; + \infty )\)
Phương pháp giải - Xem chi tiết
Tìm đạo hàm, lập bảng biến thiên và xác định giá trị nhỏ nhất
Lời giải chi tiết
a) Xét \(y = {x^3} - 3x - 4\) trên nửa khoảng [-3;2)
\(y' = 3{x^2} - 3 = 0 \Rightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\)
Bảng biến thiên:
Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_{[ - 3;2)} y = y( - 3) = - 22\), \(\mathop {\max }\limits_{[ - 3;2)} y = y( - 1) = - 2\).
b) Xét \(y = \frac{{3{x^2} - 4x}}{{{x^2} - 1}}\) trên khoảng \(( - 1; + \infty )\)
Tập xác định: \(D = ( - 1; + \infty )\)
\(y' = \frac{{4{x^2} - 6x + 4}}{{{{({x^2} - 1)}^2}}} > 0, \forall x \in D\)
Bảng biến thiên:
Từ bảng biến thiên, ta thấy hàm số không tồn tại giá trị nhỏ nhất trên khoảng \(( - 1; + \infty )\)
Bài tập 3 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo thuộc chương trình học về giới hạn của hàm số. Đây là một phần kiến thức quan trọng, nền tảng cho các chương trình học toán cao hơn. Bài tập này yêu cầu học sinh vận dụng các định nghĩa và tính chất của giới hạn để giải quyết các bài toán cụ thể.
Bài tập 3 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh tính giới hạn của các hàm số tại một điểm cho trước. Các hàm số có thể là hàm đa thức, hàm hữu tỉ, hoặc các hàm số khác. Để giải quyết bài tập này, học sinh cần nắm vững các phương pháp tính giới hạn sau:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài tập 3 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo:
lim (x→2) (x^2 - 4) / (x - 2)
Giải:
Ta có: (x^2 - 4) / (x - 2) = (x - 2)(x + 2) / (x - 2) = x + 2 (với x ≠ 2)
Vậy, lim (x→2) (x^2 - 4) / (x - 2) = lim (x→2) (x + 2) = 2 + 2 = 4
lim (x→-1) (x^3 + 1) / (x + 1)
Giải:
Ta có: (x^3 + 1) / (x + 1) = (x + 1)(x^2 - x + 1) / (x + 1) = x^2 - x + 1 (với x ≠ -1)
Vậy, lim (x→-1) (x^3 + 1) / (x + 1) = lim (x→-1) (x^2 - x + 1) = (-1)^2 - (-1) + 1 = 1 + 1 + 1 = 3
lim (x→0) sin(x) / x
Giải:
Đây là một giới hạn lượng giác cơ bản. Ta có: lim (x→0) sin(x) / x = 1
Ngoài bài tập 3 trang 18, bạn có thể tìm hiểu thêm về các khái niệm và tính chất của giới hạn sau:
Để củng cố kiến thức về giới hạn, bạn có thể luyện tập thêm các bài tập sau:
Bài tập 3 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh hiểu rõ hơn về khái niệm và tính chất của giới hạn. Hy vọng với lời giải chi tiết và những kiến thức mở rộng trên, bạn sẽ tự tin hơn trong quá trình học tập môn Toán.