Logo Header
  1. Môn Toán
  2. Giải bài tập 17 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 17 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 17 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 17 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.

Cho hình hộp chữ nhật (OABC.O'A'B'C'), với (O) là gốc toạ độ, (Aleft( {2;0;0} right)), (Cleft( {0;6;0} right)), (O'left( {0;0;4} right)). Viết phương trình: a) Mặt phẳng (left( {O'AC} right)) b) Đường thẳng (CO') c) Mặt cầu đi qua các đỉnh của hình hộp.

Đề bài

Cho hình hộp chữ nhật \(OABC.O'A'B'C'\), với \(O\) là gốc toạ độ, \(A\left( {2;0;0} \right)\), \(C\left( {0;6;0} \right)\), \(O'\left( {0;0;4} \right)\). Viết phương trình:

a) Mặt phẳng \(\left( {O'AC} \right)\)

b) Đường thẳng \(CO'\)

c) Mặt cầu đi qua các đỉnh của hình hộp.

Phương pháp giải - Xem chi tiếtGiải bài tập 17 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo 1

a) Ta nhận thấy rằng các điểm \(A\), \(C\), \(O'\) lần lượt thuộc các trục toạ độ \(Ox\), \(Oy\), \(Oz\) nên có thể viết phương trình mặt phẳng \(\left( {O'AC} \right)\) dưới dạng phương trình mặt phẳng theo đoạn chắn.

b) Ta có vectơ \(\overrightarrow {CO'} \) là vectơ chỉ phương của đường thẳng \(CO'\), từ đó viết phương trình đường thẳng \(CO'\).

c) Xác định tâm và bán kính của mặt cầu đi qua các đỉnh của hình hộp, từ đó viết phương trình mặt cầu.

Lời giải chi tiết

Giải bài tập 17 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo 2

a) Ta thấy rằng các điểm \(A\left( {2;0;0} \right)\), \(C\left( {0;6;0} \right)\), \(O'\left( {0;0;4} \right)\) lần lượt thuộc các trục toạ độ \(Ox\), \(Oy\), \(Oz\), nên phương trình mặt phẳng \(\left( {O'AC} \right)\) là \(\frac{x}{2} + \frac{y}{6} + \frac{z}{4} = 1\), hay \(6x + 2y + 3z - 12 = 0\).

b) Ta có vectơ \(\overrightarrow {CO'} = \left( {0; - 6;4} \right)\) là vectơ chỉ phương của đường thẳng \(CO'\), nên phương trình đường thẳng \(CO'\) là \(\left\{ \begin{array}{l}x = 0 + 0t\\y = 6 - 6t\\z = 0 + 4t\end{array} \right.\) hay \(\left\{ \begin{array}{l}x = 0\\y = 6 - 6t\\z = 4t\end{array} \right.\)

c) Gọi \(I\) là giao điểm của \(OB'\) và \(O'B\). Ta thấy rằng \(I\) là trung điểm của \(OB'\) và \(O'B\).

Tứ giác \(O'A'BC\) là hình chữ nhật (tứ giác đó là hình bình hành, và hai đường chéo của tứ giác đó cũng là hai đường chéo của hình hộp chữ nhật), nên suy ra \(I\) cũng là trung điểm của \(A'C\). Chứng minh tương tự, ta có \(I\) là trung điểm của \(AC'\).

Vậy ta có điểm \(I\) cách đều 8 đỉnh của hình hộp chữ nhật, nên \(I\) chính là tâm mặt cầu \(\left( S \right)\) đi qua 8 đỉnh đó.

Ta có\(A\left( {2;0;0} \right)\), \(C\left( {0;6;0} \right)\) nên \(B\left( {2;6;0} \right)\).

Ta có \(I\) là trung điểm của \(O'B\) nên \(I\left( {1;3;2} \right)\).

Bán kính của mặt cầu \(\left( S \right)\) là \(R = OI = \sqrt {{1^2} + {3^2} + {2^2}} = \sqrt {14} \)

Vậy phương trình mặt cầu đi qua 8 đỉnh của hình hộp là

\({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 2} \right)^2} = 14\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 17 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo đặc sắc thuộc chuyên mục toán 12 trên nền tảng toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 17 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo: Tổng quan

Bài tập 17 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo thuộc chương trình học về Đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững lý thuyết và kỹ năng giải bài tập là rất quan trọng để đạt kết quả tốt trong các kỳ thi.

Nội dung bài tập 17 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo

Bài tập 17 thường bao gồm các dạng bài sau:

  • Tính đạo hàm của hàm số tại một điểm.
  • Tìm đạo hàm của hàm số.
  • Ứng dụng đạo hàm để giải các bài toán liên quan đến cực trị, khoảng đơn điệu của hàm số.
  • Giải các bài toán thực tế liên quan đến đạo hàm.

Lời giải chi tiết bài tập 17 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo

Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi. Lưu ý rằng, trước khi bắt đầu giải bài tập, bạn cần nắm vững các kiến thức lý thuyết liên quan.

Câu a: (Ví dụ minh họa)

Giả sử câu a yêu cầu tính đạo hàm của hàm số f(x) = x2 + 2x - 1 tại x = 1.

Lời giải:

f'(x) = 2x + 2

f'(1) = 2(1) + 2 = 4

Vậy, đạo hàm của hàm số f(x) tại x = 1 là 4.

Câu b: (Ví dụ minh họa)

Giả sử câu b yêu cầu tìm đạo hàm của hàm số g(x) = sin(x) * cos(x).

Lời giải:

g'(x) = cos(x) * cos(x) + sin(x) * (-sin(x))

g'(x) = cos2(x) - sin2(x)

Vậy, đạo hàm của hàm số g(x) là cos2(x) - sin2(x).

Các lưu ý khi giải bài tập 17 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo

  • Nắm vững các công thức đạo hàm cơ bản.
  • Sử dụng quy tắc tính đạo hàm một cách chính xác.
  • Kiểm tra lại kết quả sau khi giải bài tập.
  • Luyện tập thường xuyên để nâng cao kỹ năng giải bài tập.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:

  • Tính vận tốc và gia tốc trong vật lý.
  • Tìm cực trị của hàm số trong kinh tế.
  • Xây dựng các mô hình toán học trong khoa học kỹ thuật.

Tài liệu tham khảo

Để học tốt môn Toán 12, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 tập 2 - Chân trời sáng tạo.
  • Sách bài tập Toán 12 tập 2.
  • Các trang web học toán online uy tín như giaitoan.edu.vn.

Kết luận

Hy vọng rằng, với lời giải chi tiết và các lưu ý trên, các bạn học sinh sẽ giải quyết thành công bài tập 17 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo. Chúc các bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12