Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 8 trang 81 SGK Toán 12 tập 2 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.
Hộp thứ nhất có 1 viên bi xanh và 5 viên bi đỏ, hộp thứ hai có 3 viên bi xanh và 5 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên đồng thời 2 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên đồng thời 2 viên bi ở hộp thứ hai. a) Tính xác suất để hai viên bi lấy ra ở hộp thứ hai là bi đỏ. b) Biết rằng 2 viên bi lấy ra từ hộp thứ hai là bi đỏ. Tính xác suất để hai viên bi lấy ra từ hộp thứ nhất cũng là bi đỏ.
Đề bài
Hộp thứ nhất có 1 viên bi xanh và 5 viên bi đỏ, hộp thứ hai có 3 viên bi xanh và 5 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên đồng thời 2 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên đồng thời 2 viên bi ở hộp thứ hai.
a) Tính xác suất để hai viên bi lấy ra ở hộp thứ hai là bi đỏ.
b) Biết rằng 2 viên bi lấy ra từ hộp thứ hai là bi đỏ. Tính xác suất để hai viên bi lấy ra từ hộp thứ nhất cũng là bi đỏ.
Phương pháp giải - Xem chi tiết
Gọi \(A\) là biến cố “Hai viên bi lấy ra ở hộp thứ nhất là màu đỏ”, \(B\) là biến cố “Hai viên bi được lấy ra ở hộp thứ hai là màu đỏ”.
a) Xác suất cần tính là \(P\left( B \right)\). Sử dụng công thức xác suất toàn phần để tính xác suất này.
b) Xác suất cần tính là \(P\left( {A|B} \right)\). Sử dụng công thức Bayes để tính xác suất này.
Lời giải chi tiết
Gọi \(A\) là biến cố “Hai viên bi lấy ra ở hộp thứ nhất là màu đỏ”, \(B\) là biến cố “Hai viên bi được lấy ra ở hộp thứ hai là màu đỏ”.
a) Biến cố \(\bar A\) là biến cố “Hai viên bi lấy ra ở hộp thứ nhất không phải là hai viên bi đỏ”, đồng nghĩa với “Hai viên bi lấy ra ở hộp thứ nhất là một bi xanh và một bi đỏ” (Do không có 2 bi xanh trong hộp thứ nhất).
Ta có \(P\left( A \right) = \frac{{C_5^2}}{{C_6^2}} = \frac{2}{3}\), suy ra \(P\left( {\bar A} \right) = 1 - \frac{2}{3} = \frac{1}{3}\).
Trường hợp lấy được 2 viên bi đỏ ở hộp thứ nhất chuyển sang hộp thứ hai thì hộp thứ hai có 3 viên bi xanh và 7 viên bi đỏ. Do đó \(P\left( {B|A} \right) = \frac{{C_7^2}}{{C_{10}^2}} = \frac{7}{{15}}\).
Trường hợp lấy được 1 viên bi đỏ và 1 viên bi xanh ở hộp thứ nhất chuyển sang hộp thứ hai thì hộp thứ hai có 4 viên bi xanh và 6 viên bi đỏ. Do đó \(P\left( {B|\bar A} \right) = \frac{{C_6^2}}{{C_{10}^2}} = \frac{1}{3}\)
Vậy xác suất để lấy được 2 viên bi đỏ ở hộp thứ hai là:
\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right) = \frac{2}{3}.\frac{7}{{15}} + \frac{1}{3}.\frac{1}{3} = \frac{{19}}{{45}}\).
b) Xác suất để hai viên bi lấy ra từ hộp thứ nhất cũng là bi đỏ, nếu hai viên bi lấy ra từ hộp thứ hai cũng là bi đỏ là:
\(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{\frac{2}{3}.\frac{7}{{15}}}}{{\frac{{19}}{{45}}}} = \frac{{14}}{{19}}\).
Bài tập 8 trang 81 SGK Toán 12 tập 2 - Chân trời sáng tạo thuộc chương trình học về Đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các khái niệm và công thức đạo hàm là yếu tố then chốt để hoàn thành bài tập này một cách chính xác.
Bài tập 8 thường xoay quanh việc tính đạo hàm của các hàm số lượng giác, hàm số mũ, hàm số logarit và các hàm hợp. Đặc biệt, bài tập có thể yêu cầu học sinh sử dụng quy tắc đạo hàm của hàm hợp, quy tắc đạo hàm của tích, thương, và các công thức đạo hàm cơ bản khác.
Ví dụ: Tính đạo hàm của hàm số f(x) = sin(2x + 1).
Giải:
Bài tập 8 trang 81 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, bạn sẽ tự tin giải quyết bài tập này một cách hiệu quả. Chúc bạn học tập tốt!