Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 2 theo chương trình Chân trời sáng tạo. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài tập 2 trang 20, từ đó nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu, logic, kèm theo các ví dụ minh họa cụ thể để bạn có thể áp dụng vào các bài tập tương tự.
Tính các tích phân sau: a) \(\int\limits_1^2 {{x^4}dx} \) b) \(\int\limits_1^2 {\frac{1}{{\sqrt x }}dx} \) c) \(\int\limits_0^{\frac{\pi }{4}} {\frac{1}{{{{\cos }^2}x}}dx} \) d) \(\int\limits_0^2 {{3^x}dx} \)
Đề bài
Tính các tích phân sau:
a) \(\int\limits_1^2 {{x^4}dx} \)
b) \(\int\limits_1^2 {\frac{1}{{\sqrt x }}dx} \)
c) \(\int\limits_0^{\frac{\pi }{4}} {\frac{1}{{{{\cos }^2}x}}dx} \)
d) \(\int\limits_0^2 {{3^x}dx} \)
Phương pháp giải - Xem chi tiết
Sử dụng công thức tính tích phân \(\int\limits_a^b {f\left( x \right)dx} = \left. {F\left( x \right)} \right|_a^b = F\left( b \right) - F\left( a \right)\).
Lời giải chi tiết
a) \(\int\limits_1^2 {{x^4}dx} = \left. {\left( {\frac{{{x^5}}}{5}} \right)} \right|_1^2 = \frac{{{2^5}}}{5} - \frac{{{1^5}}}{5} = \frac{{31}}{5}\)
b) \(\int\limits_1^2 {\frac{1}{{\sqrt x }}dx} = \int\limits_1^2 {{x^{ - \frac{1}{2}}}dx} = \left. {\left( {\frac{{{x^{\frac{1}{2}}}}}{{\frac{1}{2}}}} \right)} \right|_1^2 = \frac{{{2^{\frac{1}{2}}}}}{{\frac{1}{2}}} - \frac{{{1^{\frac{1}{2}}}}}{{\frac{1}{2}}} = 2\left( {\sqrt 2 - 1} \right)\)
c) \(\int\limits_0^{\frac{\pi }{4}} {\frac{1}{{{{\cos }^2}x}}dx} = \left. {\left( {\tan x} \right)} \right|_0^{\frac{\pi }{4}} = \tan \frac{\pi }{4} - \tan 0 = 1\)
d) \(\int\limits_0^2 {{3^x}dx} = \left. {\left( {\frac{{{3^x}}}{{\ln 3}}} \right)} \right|_0^2 = \frac{{{3^2}}}{{\ln 3}} - \frac{{{3^0}}}{{\ln 3}} = \frac{8}{{\ln 3}}\)
Bài tập 2 trang 20 SGK Toán 12 tập 2 chương trình Chân trời sáng tạo thuộc chủ đề về đạo hàm của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về các quy tắc tính đạo hàm, đặc biệt là quy tắc tính đạo hàm của tổng, hiệu, tích, thương của các hàm số, cũng như đạo hàm của hàm hợp. Việc nắm vững các quy tắc này là nền tảng để giải quyết các bài toán đạo hàm phức tạp hơn trong chương trình học.
Bài tập 2 thường bao gồm các hàm số đa thức, hàm số hữu tỉ, hàm số lượng giác và hàm số mũ. Học sinh cần xác định đúng các hàm số thành phần và áp dụng quy tắc đạo hàm tương ứng để tìm đạo hàm của hàm số đã cho. Đôi khi, bài tập còn yêu cầu học sinh rút gọn biểu thức đạo hàm để có kết quả cuối cùng đơn giản nhất.
Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Giải:
Đạo hàm có rất nhiều ứng dụng trong toán học và các lĩnh vực khác, bao gồm:
Việc giải bài tập 2 trang 20 SGK Toán 12 tập 2 chương trình Chân trời sáng tạo là một bước quan trọng để nắm vững kiến thức về đạo hàm. Hy vọng rằng với những hướng dẫn và ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết các bài toán đạo hàm và đạt kết quả tốt trong môn Toán.