Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 1 - Chân trời sáng tạo. Bài viết này sẽ giúp bạn hiểu rõ phương pháp giải và tự tin làm bài tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nâng cao kiến thức và đạt kết quả cao trong môn Toán.
Cho hàm số bậc ba y = f(x) có đồ thị như Hình 3. Viết công thức của hàm số
Đề bài
Cho hàm số bậc ba y = f(x) có đồ thị như Hình 3. Viết công thức của hàm số
Phương pháp giải - Xem chi tiết
Xác định các cực trị của đồ thị hàm số và giao điểm của đồ thị hàm số với các trục tọa độ
Lời giải chi tiết
Hàm số có dạng: \(y = a{x^3} + b{x^2} + cx + d(a < 0)\)
Đồ thị hàm số giao với Oy tại điểm (0; 5) nên: \(y(0) = a{.0^3} + b{.0^2} + c.0 + d = 5 \Leftrightarrow d = 5\)
Đồ thị hàm số đi qua điểm (3; 5) nên: \(y = a{.3^3} + b{.3^2} + c.3 + 5 = 5 \Leftrightarrow 27a + 9b + 3c = 0\)
Đồ thị hàm số đi qua điểm (1; 1) nên: \(y(1) = a{.1^3} + b{.1^2} + c.1 + 5 = 1 \Leftrightarrow a + b + c = - 4\)
Ta có: \(y' = 3a{x^2} + 2bx + c\)
Hàm số đạt cực đại tại điểm (3; 5) nên: \(y'(3) = 3a{x^2} + 2bx + c = 3.a{.3^2} + 2.b.3 + c = 0\)\( \Leftrightarrow 27a + 6b + c = 0\)
Ta có hệ phương trình: \(\left\{ \begin{array}{l}27a + 9b + 3c = 0\\a + b + c = - 4\\27a + 6b + c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 6\\c = - 9\end{array} \right.\)
Vậy hàm số là \(y = - {x^3} + 6{x^2} - 9x + 5\)
Bài tập 10 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo thuộc chương trình học về giới hạn của hàm số. Đây là một phần kiến thức quan trọng, nền tảng cho các chương trình học toán cao hơn. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn để giải quyết các bài toán cụ thể.
Bài tập 10 thường bao gồm các dạng bài sau:
Để giải quyết bài tập 10 trang 37 hiệu quả, bạn cần nắm vững các phương pháp sau:
Bài tập: Tính limx→2 (x2 - 4) / (x - 2)
Lời giải:
Ta có:
limx→2 (x2 - 4) / (x - 2) = limx→2 (x - 2)(x + 2) / (x - 2) = limx→2 (x + 2) = 2 + 2 = 4
Ngoài bài tập trên, bạn có thể gặp các bài tập tương tự với các hàm số khác nhau. Để giải quyết các bài tập này, bạn cần áp dụng các phương pháp đã nêu ở trên một cách linh hoạt.
Để học tập và ôn luyện kiến thức về giới hạn, bạn có thể tham khảo các tài liệu sau:
Bài tập 10 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về giới hạn. Hy vọng với những hướng dẫn chi tiết và phương pháp giải hiệu quả mà giaitoan.edu.vn cung cấp, bạn sẽ tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán.