Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 9 trang 28 SGK Toán 12 tập 2 theo chương trình Chân trời sáng tạo.
Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và giúp bạn nắm vững kiến thức Toán học.
Diện tích của hình phẳng giới hạn bởi đồ thị của hai hàm số (y = {x^3}), (y = x) và hai đường thẳng (x = 0), (x = 2) bằng: A. (2) B. (frac{5}{2}) C. (frac{9}{4}) D. (frac{1}{4})
Đề bài
Diện tích của hình phẳng giới hạn bởi đồ thị của hai hàm số \(y = {x^3}\), \(y = x\) và hai đường thẳng \(x = 0\), \(x = 2\) bằng:
A. \(2\)
B. \(\frac{5}{2}\)
C. \(\frac{9}{4}\)
D. \(\frac{1}{4}\)
Phương pháp giải - Xem chi tiết
Diện tích hình phẳng giới hạn bởi đồ thị các hàm số \(y = f\left( x \right)\), \(y = g\left( x \right)\) và các đường thẳng \(x = a\), \(x = b\) là \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).
Lời giải chi tiết
Diện tích của hình phẳng giới hạn bởi đồ thị của hai hàm số \(y = {x^3}\), \(y = x\) và hai đường thẳng \(x = 0\), \(x = 2\) là \(S = \int\limits_0^2 {\left| {{x^3} - x} \right|dx} \).
Ta có \({x^3} - x = 0 \Leftrightarrow x = 0\) hoặc \(x = \pm 1\). Do đó:
\(S = \int\limits_0^1 {\left| {{x^3} - x} \right|dx} + \int\limits_1^2 {\left| {{x^3} - x} \right|dx} = \left| {\int\limits_0^1 {\left( {{x^3} - x} \right)dx} } \right| + \left| {\int\limits_1^2 {\left( {{x^3} - x} \right)dx} } \right| = \left| {\left. {\left( {\frac{{{x^4}}}{4} - \frac{{{x^2}}}{2}} \right)} \right|_0^1} \right| + \left| {\left. {\left( {\frac{{{x^4}}}{4} - \frac{{{x^2}}}{2}} \right)} \right|_1^2} \right|\)
\( = \left| { - \frac{1}{4}} \right| + \left| {\frac{9}{4}} \right| = \frac{5}{2}\)
Bài tập 9 trang 28 SGK Toán 12 tập 2 chương trình Chân trời sáng tạo thuộc chủ đề về đạo hàm của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế, cụ thể là tìm đạo hàm của hàm số và phân tích các tính chất của đạo hàm.
Bài tập 9 thường có dạng như sau:
Để giải quyết bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
(Ở đây sẽ là lời giải chi tiết cho bài tập 9, bao gồm các bước giải cụ thể, giải thích rõ ràng và kết luận.)
Ví dụ 1: Cho hàm số f(x) = x3 - 3x2 + 2. Tính f'(x) và xác định khoảng đơn điệu của hàm số.
Lời giải:
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
f(x) | Đồng biến | Nghịch biến | Đồng biến |
Vậy hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2).
Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:
Bài tập 9 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính đạo hàm và vận dụng đạo hàm để giải quyết các bài toán thực tế. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn đã nắm vững phương pháp giải bài tập này.