Chào mừng các em học sinh đến với lời giải chi tiết bài tập mục 2 trang 59,60 SGK Toán 12 tập 1 chương trình Chân trời sáng tạo. Tại giaitoan.edu.vn, chúng tôi cung cấp đáp án chính xác, dễ hiểu cùng với phương pháp giải bài tập một cách khoa học, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Bài tập mục 2 trang 59,60 tập trung vào các kiến thức quan trọng về...
Biểu thức toạ độ của tích vô hướng
Trả lời câu hỏi Khám phá 2 trang 59 SGK Toán 12 Chân trời sáng tạo
Cho hai vectơ \(\overrightarrow a = ({a_1};{a_2};{a_3})\), \(\overrightarrow b = ({b_1};{b_2};{b_3})\).
a) Biểu diễn từng vectơ \(\overrightarrow a \) và \(\overrightarrow b \) theo ba vectơ \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \)
b) Tính các tích vô hướng \({\overrightarrow i ^2},{\overrightarrow j ^2},{\overrightarrow k ^2}\), \(\overrightarrow i .\overrightarrow j \), \(\overrightarrow j .\overrightarrow k \), \(\overrightarrow k .\overrightarrow i \)
c) Tính tích vô hướng \(\overrightarrow a .\overrightarrow b \) theo toạ độ của hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \).
Phương pháp giải:
Áp dụng công thức tính tích vô hướng của 2 vecto: \(\overrightarrow a .\overrightarrow b = |\overrightarrow a |.|\overrightarrow b |.\cos (\overrightarrow a ,\overrightarrow b )\)
Lời giải chi tiết:
a) \(\overrightarrow a = ({a_1};{a_2};{a_3}) = {a_1}(1;0;0) + {a_2}(0;0;1) + {a_3}(0;0;1) = {a_1}\overrightarrow i + {a_2}\overrightarrow j + {a_3}\overrightarrow k \)
\(\overrightarrow b = ({b_1};{b_2};{b_3}) = {b_1}(1;0;0) + {b_2}(0;0;1) + {b_3}(0;0;1) = {b_1}\overrightarrow i + {b_2}\overrightarrow j + {b_3}\overrightarrow k \)
b) \({\overrightarrow i ^2} = \overrightarrow i .\overrightarrow i = |\overrightarrow i |.|\overrightarrow i |.\cos (\overrightarrow i ,\overrightarrow i ) = 1.1.\cos 0^\circ = 1\)
\({\overrightarrow j ^2} = \overrightarrow j .\overrightarrow j = |\overrightarrow j |.|\overrightarrow j |.\cos (\overrightarrow j ,\overrightarrow j ) = 1.1.\cos 0^\circ = 1\)
\({\overrightarrow k ^2} = \overrightarrow k .\overrightarrow k = |\overrightarrow k |.|\overrightarrow k |.\cos (\overrightarrow k ,\overrightarrow k ) = 1.1.\cos 0^\circ = 1\)
\(\overrightarrow i .\overrightarrow j = |\overrightarrow i |.|\overrightarrow j |.\cos (\overrightarrow i ,\overrightarrow j ) = 1.1.\cos 90^\circ = 0\)
\(\overrightarrow j .\overrightarrow k = |\overrightarrow j |.|\overrightarrow k |.\cos (\overrightarrow j ,\overrightarrow k ) = 1.1.\cos 90^\circ = 0\)
\(\overrightarrow i .\overrightarrow k = |\overrightarrow i |.|\overrightarrow k |.\cos (\overrightarrow i ,\overrightarrow k ) = 1.1.\cos 90^\circ = 0\)
c) \(\overrightarrow a .\overrightarrow b = ({a_1}\overrightarrow i + {a_2}\overrightarrow j + {a_3}\overrightarrow k ) . ({b_1}\overrightarrow i + {b_2}\overrightarrow j + {b_3}\overrightarrow k )\)
\( = {a_1}{b_1}{\overrightarrow i ^2} + {a_1}{b_2}\overrightarrow i .\overrightarrow j + {a_1}{b_3}\overrightarrow i .\overrightarrow k + {a_2}{b_1}\overrightarrow i .\overrightarrow j + {a_2}{b_2}{\overrightarrow j ^2} + {a_2}{b_3}\overrightarrow j .\overrightarrow k + {a_3}{b_1}\overrightarrow i .\overrightarrow k + {a_3}{b_2}\overrightarrow j .\overrightarrow k + {a_3}{b_3}{\overrightarrow k ^2}\)
\( = {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\).
Trả lời câu hỏi Thực hành 2 trang 60 SGK Toán 12 Chân trời sáng tạo
Cho ba vectơ \(\overrightarrow m = ( - 5;4;9)\), \(\overrightarrow n = (2; - 7;0)\), \(\overrightarrow p = (6;3; - 4)\).
a) Tính \(\overrightarrow m .\overrightarrow n \), \(\overrightarrow m .\overrightarrow p \)
b) Tính \(|\overrightarrow m |\), \(|\overrightarrow n |\), \(\cos (\overrightarrow m ,\overrightarrow n )\)
c) Cho \(\overrightarrow q = (1; - 2;0)\). Vectơ \(\overrightarrow q \) có vuông góc với \(\overrightarrow p \) không?
Phương pháp giải:
a) Cho hai vectơ \(\overrightarrow a = ({a_1};{a_2};{a_3})\), \(\overrightarrow b = ({b_1};{b_2};{b_3})\), ta có biểu thức tọa độ của tích vô hướng \(\overrightarrow a .\overrightarrow b = {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\)
b) Công thức tính độ lớn vecto: \(|\overrightarrow a | = \sqrt {{a_1}^2 + {a_2}^2 + {a_3}^2} \)
c) \(\overrightarrow a \bot \overrightarrow b \Rightarrow \overrightarrow a .\overrightarrow b = 0\)
Lời giải chi tiết:
a) \(\overrightarrow m .\overrightarrow n = - 5.2 + 4.( - 7) = - 38\)
\(\overrightarrow m .\overrightarrow p = ( - 5).6 + 4.3 + 9.( - 4) = - 54\)
b) \(|\overrightarrow m | = \sqrt {{{( - 5)}^2} + {4^2} + {9^2}} = \sqrt {122} \)
\(|\overrightarrow n | = \sqrt {{2^2} + {{( - 7)}^2}} = \sqrt {53} \)
\(\cos (\overrightarrow m ,\overrightarrow n ) = \frac{{\overrightarrow m .\overrightarrow n }}{{|\overrightarrow m |.|\overrightarrow n |}} = \frac{{ - 38}}{{\sqrt {122} .\sqrt {53} }} = - \frac{{19\sqrt {6466} }}{{3233}}\)
c) \(\overrightarrow q .\overrightarrow p = 1.6 + 3.(-2) - 4.0 = 0\) nên \(\overrightarrow q \) vuông góc với \(\overrightarrow p \).
Trả lời câu hỏi Vận dụng 2 trang 60 SGK Toán 12 Chân trời sáng tạo
Một thiết bị thăm dò đáy biển (Hình 2) được đẩy bởi một lực \(\overrightarrow f = (5;4; - 2)\) (đơn vị: N) giúp thiết bị thực hiện độ dời \(\overrightarrow a = (70;20; - 40)\) (đơn vị: m). Tính công sinh bởi lực \(\overrightarrow f \)
Phương pháp giải:
Áp dụng công thức tính công \(A = \overrightarrow F .\overrightarrow d \)
Lời giải chi tiết:
Công sinh bởi lực \(\overrightarrow f \) là: \(A = \overrightarrow f .\overrightarrow a = 5.70 + 4.20 - 2.( - 40) = 510J\)
Trả lời câu hỏi Khám phá 2 trang 59 SGK Toán 12 Chân trời sáng tạo
Cho hai vectơ \(\overrightarrow a = ({a_1};{a_2};{a_3})\), \(\overrightarrow b = ({b_1};{b_2};{b_3})\).
a) Biểu diễn từng vectơ \(\overrightarrow a \) và \(\overrightarrow b \) theo ba vectơ \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \)
b) Tính các tích vô hướng \({\overrightarrow i ^2},{\overrightarrow j ^2},{\overrightarrow k ^2}\), \(\overrightarrow i .\overrightarrow j \), \(\overrightarrow j .\overrightarrow k \), \(\overrightarrow k .\overrightarrow i \)
c) Tính tích vô hướng \(\overrightarrow a .\overrightarrow b \) theo toạ độ của hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \).
Phương pháp giải:
Áp dụng công thức tính tích vô hướng của 2 vecto: \(\overrightarrow a .\overrightarrow b = |\overrightarrow a |.|\overrightarrow b |.\cos (\overrightarrow a ,\overrightarrow b )\)
Lời giải chi tiết:
a) \(\overrightarrow a = ({a_1};{a_2};{a_3}) = {a_1}(1;0;0) + {a_2}(0;0;1) + {a_3}(0;0;1) = {a_1}\overrightarrow i + {a_2}\overrightarrow j + {a_3}\overrightarrow k \)
\(\overrightarrow b = ({b_1};{b_2};{b_3}) = {b_1}(1;0;0) + {b_2}(0;0;1) + {b_3}(0;0;1) = {b_1}\overrightarrow i + {b_2}\overrightarrow j + {b_3}\overrightarrow k \)
b) \({\overrightarrow i ^2} = \overrightarrow i .\overrightarrow i = |\overrightarrow i |.|\overrightarrow i |.\cos (\overrightarrow i ,\overrightarrow i ) = 1.1.\cos 0^\circ = 1\)
\({\overrightarrow j ^2} = \overrightarrow j .\overrightarrow j = |\overrightarrow j |.|\overrightarrow j |.\cos (\overrightarrow j ,\overrightarrow j ) = 1.1.\cos 0^\circ = 1\)
\({\overrightarrow k ^2} = \overrightarrow k .\overrightarrow k = |\overrightarrow k |.|\overrightarrow k |.\cos (\overrightarrow k ,\overrightarrow k ) = 1.1.\cos 0^\circ = 1\)
\(\overrightarrow i .\overrightarrow j = |\overrightarrow i |.|\overrightarrow j |.\cos (\overrightarrow i ,\overrightarrow j ) = 1.1.\cos 90^\circ = 0\)
\(\overrightarrow j .\overrightarrow k = |\overrightarrow j |.|\overrightarrow k |.\cos (\overrightarrow j ,\overrightarrow k ) = 1.1.\cos 90^\circ = 0\)
\(\overrightarrow i .\overrightarrow k = |\overrightarrow i |.|\overrightarrow k |.\cos (\overrightarrow i ,\overrightarrow k ) = 1.1.\cos 90^\circ = 0\)
c) \(\overrightarrow a .\overrightarrow b = ({a_1}\overrightarrow i + {a_2}\overrightarrow j + {a_3}\overrightarrow k ) . ({b_1}\overrightarrow i + {b_2}\overrightarrow j + {b_3}\overrightarrow k )\)
\( = {a_1}{b_1}{\overrightarrow i ^2} + {a_1}{b_2}\overrightarrow i .\overrightarrow j + {a_1}{b_3}\overrightarrow i .\overrightarrow k + {a_2}{b_1}\overrightarrow i .\overrightarrow j + {a_2}{b_2}{\overrightarrow j ^2} + {a_2}{b_3}\overrightarrow j .\overrightarrow k + {a_3}{b_1}\overrightarrow i .\overrightarrow k + {a_3}{b_2}\overrightarrow j .\overrightarrow k + {a_3}{b_3}{\overrightarrow k ^2}\)
\( = {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\).
Trả lời câu hỏi Thực hành 2 trang 60 SGK Toán 12 Chân trời sáng tạo
Cho ba vectơ \(\overrightarrow m = ( - 5;4;9)\), \(\overrightarrow n = (2; - 7;0)\), \(\overrightarrow p = (6;3; - 4)\).
a) Tính \(\overrightarrow m .\overrightarrow n \), \(\overrightarrow m .\overrightarrow p \)
b) Tính \(|\overrightarrow m |\), \(|\overrightarrow n |\), \(\cos (\overrightarrow m ,\overrightarrow n )\)
c) Cho \(\overrightarrow q = (1; - 2;0)\). Vectơ \(\overrightarrow q \) có vuông góc với \(\overrightarrow p \) không?
Phương pháp giải:
a) Cho hai vectơ \(\overrightarrow a = ({a_1};{a_2};{a_3})\), \(\overrightarrow b = ({b_1};{b_2};{b_3})\), ta có biểu thức tọa độ của tích vô hướng \(\overrightarrow a .\overrightarrow b = {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\)
b) Công thức tính độ lớn vecto: \(|\overrightarrow a | = \sqrt {{a_1}^2 + {a_2}^2 + {a_3}^2} \)
c) \(\overrightarrow a \bot \overrightarrow b \Rightarrow \overrightarrow a .\overrightarrow b = 0\)
Lời giải chi tiết:
a) \(\overrightarrow m .\overrightarrow n = - 5.2 + 4.( - 7) = - 38\)
\(\overrightarrow m .\overrightarrow p = ( - 5).6 + 4.3 + 9.( - 4) = - 54\)
b) \(|\overrightarrow m | = \sqrt {{{( - 5)}^2} + {4^2} + {9^2}} = \sqrt {122} \)
\(|\overrightarrow n | = \sqrt {{2^2} + {{( - 7)}^2}} = \sqrt {53} \)
\(\cos (\overrightarrow m ,\overrightarrow n ) = \frac{{\overrightarrow m .\overrightarrow n }}{{|\overrightarrow m |.|\overrightarrow n |}} = \frac{{ - 38}}{{\sqrt {122} .\sqrt {53} }} = - \frac{{19\sqrt {6466} }}{{3233}}\)
c) \(\overrightarrow q .\overrightarrow p = 1.6 + 3.(-2) - 4.0 = 0\) nên \(\overrightarrow q \) vuông góc với \(\overrightarrow p \).
Trả lời câu hỏi Vận dụng 2 trang 60 SGK Toán 12 Chân trời sáng tạo
Một thiết bị thăm dò đáy biển (Hình 2) được đẩy bởi một lực \(\overrightarrow f = (5;4; - 2)\) (đơn vị: N) giúp thiết bị thực hiện độ dời \(\overrightarrow a = (70;20; - 40)\) (đơn vị: m). Tính công sinh bởi lực \(\overrightarrow f \)
Phương pháp giải:
Áp dụng công thức tính công \(A = \overrightarrow F .\overrightarrow d \)
Lời giải chi tiết:
Công sinh bởi lực \(\overrightarrow f \) là: \(A = \overrightarrow f .\overrightarrow a = 5.70 + 4.20 - 2.( - 40) = 510J\)
Mục 2 trang 59,60 SGK Toán 12 tập 1 Chân trời sáng tạo là một phần quan trọng trong chương trình học, tập trung vào việc củng cố kiến thức về... (nêu rõ chủ đề chính của mục 2). Việc nắm vững kiến thức và kỹ năng giải bài tập trong mục này là nền tảng để học tốt các kiến thức tiếp theo.
Mục 2 bao gồm các bài tập với nhiều dạng khác nhau, đòi hỏi học sinh phải vận dụng linh hoạt các kiến thức đã học. Dưới đây là phân tích chi tiết từng bài tập:
Đề bài: ...
Lời giải:
Giải thích: ...
Đề bài: ...
Lời giải:
Giải thích: ...
Đề bài: ...
Lời giải:
...
Giải thích: ...
Trong mục 2 trang 59,60, học sinh thường gặp các dạng bài tập sau:
Để giải bài tập mục 2 trang 59,60 SGK Toán 12 tập 1 Chân trời sáng tạo một cách hiệu quả, học sinh cần:
Kiến thức trong mục 2 trang 59,60 có ứng dụng rộng rãi trong thực tế, đặc biệt trong các lĩnh vực như... (nêu các ứng dụng thực tế). Việc hiểu rõ và vận dụng kiến thức này sẽ giúp học sinh giải quyết các vấn đề thực tế một cách hiệu quả.
Hy vọng với lời giải chi tiết và phương pháp giải bài tập hiệu quả mà giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt trong môn Toán 12. Chúc các em học tốt!
Bài tập | Độ khó | Lời giải |
---|---|---|
Bài 1 | Dễ | Xem chi tiết |
Bài 2 | Trung bình | Xem chi tiết |
Bài 3 | Khó | Xem chi tiết |