Logo Header
  1. Môn Toán
  2. Giải bài tập 16 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 16 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 16 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo

Chào mừng các em học sinh đến với lời giải chi tiết bài tập 16 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.

Tính các tích phân sau: a) (intlimits_0^1 {left( {4{x^3} + x} right)dx} ) b) (intlimits_1^2 {frac{{x - 2}}{{{x^2}}}dx} ) c) (intlimits_0^4 {{2^{2x}}dx} ) d) (intlimits_1^2 {left( {{e^{x - 1}} + {2^{x + 1}}} right)dx} )

Đề bài

Tính các tích phân sau:

a) \(\int\limits_0^1 {\left( {4{x^3} + x} \right)dx} \)

b) \(\int\limits_1^2 {\frac{{x - 2}}{{{x^2}}}dx} \)

c) \(\int\limits_0^4 {{2^{2x}}dx} \)

d) \(\int\limits_1^2 {\left( {{e^{x - 1}} + {2^{x + 1}}} \right)dx} \)

Phương pháp giải - Xem chi tiếtGiải bài tập 16 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo 1

Sử dụng các tính chất của tích phân để đưa về tính các tích phân cơ bản.

Lời giải chi tiết

a) \(\int\limits_0^1 {\left( {4{x^3} + x} \right)dx} = \left. {\left( {{x^4} + \frac{{{x^2}}}{2}} \right)} \right|_0^1 = \frac{3}{2} - 0 = \frac{3}{2}\)

b) \(\int\limits_1^2 {\frac{{x - 2}}{{{x^2}}}dx} = \int\limits_1^2 {\left( {\frac{1}{x} - \frac{2}{{{x^2}}}} \right)dx} = \int\limits_1^2 {\left( {\frac{1}{x} - 2{x^{ - 2}}} \right)dx} = \left. {\left( {\ln \left| x \right| - 2\frac{{{x^{ - 1}}}}{{ - 1}}} \right)} \right|_1^2\)

\( = \left. {\left( {\ln \left| x \right| + \frac{2}{x}} \right)} \right|_1^2 = \left( {\ln 2 + 1} \right) - \left( {\ln 1 + 2} \right) = \ln 2 - 1\)

c) \(\int\limits_0^4 {{2^{2x}}dx} = \int\limits_0^4 {{4^x}dx} = \left. {\left( {\frac{{{4^x}}}{{\ln 4}}} \right)} \right|_0^4 = \frac{{{4^4}}}{{\ln 4}} - \frac{{{4^0}}}{{\ln 4}} = \frac{{255}}{{\ln 4}}\)

d) \(\int\limits_1^2 {\left( {{e^{x - 1}} + {2^{x + 1}}} \right)dx} = \int\limits_1^2 {\left( {\frac{{{e^x}}}{e} + {2^x}.2} \right)dx} = \frac{1}{e}\int\limits_1^2 {{e^x}dx} + 2\int\limits_1^2 {{2^x}dx} \)

\( = \frac{1}{e}.\left. {\left( {{e^x}} \right)} \right|_1^2 + 2.\left. {\left( {\frac{{{2^x}}}{{\ln 2}}} \right)} \right|_1^2 = \frac{1}{e}\left( {{e^2} - {e^1}} \right) + 2.\left( {\frac{{{2^2}}}{{\ln 2}} - \frac{{{2^1}}}{{\ln 2}}} \right) = e - 1 + 2.\frac{2}{{\ln 2}} = e - 1 + \frac{4}{{\ln 2}}\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 16 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo đặc sắc thuộc chuyên mục bài toán lớp 12 trên nền tảng môn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 16 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo: Tổng quan

Bài tập 16 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế, cụ thể là tìm đạo hàm của hàm số và sử dụng đạo hàm để khảo sát hàm số.

Nội dung bài tập 16 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo

Bài tập 16 bao gồm các câu hỏi nhỏ, yêu cầu học sinh:

  • Tính đạo hàm của các hàm số đã cho.
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Tìm cực trị của hàm số.
  • Vẽ đồ thị hàm số.

Phương pháp giải bài tập 16 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo

Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:

  1. Quy tắc tính đạo hàm: Nắm vững các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit.
  2. Đạo hàm của hàm hợp: Hiểu rõ quy tắc tính đạo hàm của hàm hợp.
  3. Ứng dụng đạo hàm: Biết cách sử dụng đạo hàm để khảo sát hàm số, tìm cực trị, và vẽ đồ thị hàm số.

Lời giải chi tiết bài tập 16 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo

Câu a: Tính đạo hàm của hàm số f(x) = x3 - 3x2 + 2x - 1.

Lời giải:

f'(x) = 3x2 - 6x + 2

Câu b: Xác định khoảng đồng biến, nghịch biến của hàm số f(x) = x3 - 3x2 + 2x - 1.

Lời giải:

f'(x) = 3x2 - 6x + 2

Giải phương trình f'(x) = 0, ta được x1 = (3 - √3)/3 và x2 = (3 + √3)/3.

Lập bảng xét dấu f'(x), ta có:

x-∞(3 - √3)/3(3 + √3)/3+∞
f'(x)+-+
f(x)Đồng biếnNghịch biếnĐồng biến

Vậy hàm số đồng biến trên các khoảng (-∞; (3 - √3)/3) và ((3 + √3)/3; +∞), nghịch biến trên khoảng ((3 - √3)/3; (3 + √3)/3).

Câu c: Tìm cực trị của hàm số f(x) = x3 - 3x2 + 2x - 1.

Lời giải:

Hàm số đạt cực đại tại x1 = (3 - √3)/3, giá trị cực đại là f(x1) = ...

Hàm số đạt cực tiểu tại x2 = (3 + √3)/3, giá trị cực tiểu là f(x2) = ...

Lưu ý khi giải bài tập

  • Luôn kiểm tra lại kết quả sau khi tính toán.
  • Sử dụng máy tính cầm tay để hỗ trợ tính toán.
  • Tham khảo các tài liệu học tập khác để hiểu rõ hơn về kiến thức.

Kết luận

Bài tập 16 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày trong bài viết này, các em sẽ tự tin hơn trong quá trình học tập và giải quyết các bài toán tương tự.

Tài liệu, đề thi và đáp án Toán 12