Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 1 trang 80 SGK Toán 12 tập 2 theo chương trình Chân trời sáng tạo.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong học tập.
Cho hai biến cố \(A\) và \(B\) có \(P\left( A \right) = 0,8\); \(P\left( B \right) = 0,5\) và \(P\left( {AB} \right) = 0,2\). a) Xác suất của biến cố \(A\) với điều kiện \(B\) là A. \(0,4\) B. \(0,5\) C. \(0,25\) D. \(0,625\) b) Xác suất biến cố \(B\) không xảy ra với điều kiện biến cố \(A\) xảy ra là A. \(0,6\) B. \(0,5\) C. \(0,75\) D. \(0,25\) c) Giá trị biểu thức \(\frac{{P\left( {A|B} \right)}}{{P\left( A \right)}} - \frac{{P\left( {B|A} \right)}}{{P\left( B \right)}}\) là A. \(
Đề bài
Cho hai biến cố \(A\) và \(B\) có \(P\left( A \right) = 0,8\); \(P\left( B \right) = 0,5\) và \(P\left( {AB} \right) = 0,2\).
a) Xác suất của biến cố \(A\) với điều kiện \(B\) là
A. \(0,4\)
B. \(0,5\)
C. \(0,25\)
D. \(0,625\)
b) Xác suất biến cố \(B\) không xảy ra với điều kiện biến cố \(A\) xảy ra là
A. \(0,6\)
B. \(0,5\)
C. \(0,75\)
D. \(0,25\)
c) Giá trị biểu thức \(\frac{{P\left( {A|B} \right)}}{{P\left( A \right)}} - \frac{{P\left( {B|A} \right)}}{{P\left( B \right)}}\) là
A. \( - 0,5\)
B. \(0\)
C. \(0,5\)
D. \(1\)
Phương pháp giải - Xem chi tiết
a) Xác suất cần tính là \(P\left( {A|B} \right)\). Sử dụng công thức tính xác suất có điều kiện để tính \(P\left( {A|B} \right)\).
b) Xác suất cần tính là \(P\left( {\bar B|A} \right)\). Sử dụng công thức tính xác suất có điều kiện để tính \(P\left( {B|A} \right)\), sau đó tính \(P\left( {\bar B|A} \right) = 1 - P\left( {B|A} \right)\).
c) Từ câu a và b, tính \(\frac{{P\left( {A|B} \right)}}{{P\left( A \right)}} - \frac{{P\left( {B|A} \right)}}{{P\left( B \right)}}\).
Lời giải chi tiết
a) Xác suất của biến cố \(A\) với điều kiện \(B\) là:
\(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,2}}{{0,5}} = 0,4\).
Vậy đáp án đúng là A.
b) Xác suất cần tính là \(P\left( {\bar B|A} \right)\).
Ta có \(P\left( {B|A} \right) = \frac{{P\left( {BA} \right)}}{{P\left( A \right)}} = \frac{{0,2}}{{0,8}} = 0,25\).
Suy ra \(P\left( {\bar B|A} \right) = 1 - P\left( {B|A} \right) = 1 - 0,25 = 0,75\).
Vậy đáp án đúng là C.
c) Từ câu a và b, ta có \(\frac{{P\left( {A|B} \right)}}{{P\left( A \right)}} - \frac{{P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,4}}{{0,8}} - \frac{{0,25}}{{0,5}} = 0\).
Vậy đáp án đúng là B.
Bài tập 1 trang 80 SGK Toán 12 tập 2 thuộc chương trình Chân trời sáng tạo tập trung vào việc ôn tập kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này thường yêu cầu học sinh vận dụng các công thức đạo hàm cơ bản, quy tắc tính đạo hàm, và các phương pháp giải phương trình, bất phương trình để tìm cực trị, khoảng đơn điệu, và điểm uốn của hàm số.
Bài tập 1 thường bao gồm các hàm số đa thức, hàm số hữu tỉ, và hàm số lượng giác. Để giải bài tập này một cách hiệu quả, bạn cần thực hiện các bước sau:
Giả sử chúng ta có hàm số y = x3 - 3x2 + 2. Hãy cùng giải bài tập này theo các bước trên:
Để củng cố kiến thức, bạn có thể luyện tập thêm các bài tập tương tự trong SGK Toán 12 tập 2 và các tài liệu tham khảo khác. Hãy chú trọng vào việc phân tích đề bài, xác định đúng các bước giải, và kiểm tra lại kết quả.
Giải bài tập 1 trang 80 SGK Toán 12 tập 2 - Chân trời sáng tạo đòi hỏi sự nắm vững kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết bài tập này và các bài tập tương tự khác. Chúc bạn học tập tốt!