Logo Header
  1. Môn Toán
  2. Giải mục 3 trang 35, 36, 37, 38 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải mục 3 trang 35, 36, 37, 38 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải mục 3 trang 35, 36, 37, 38 SGK Toán 12 tập 2 - Chân trời sáng tạo

Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 12 tập 2 của giaitoan.edu.vn. Ở đây, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho từng bài tập trong SGK Toán 12, giúp các em nắm vững kiến thức và tự tin hơn trong học tập.

Mục 3 SGK Toán 12 tập 2 tập trung vào các kiến thức quan trọng về... (nêu ngắn gọn chủ đề mục 3). Chúng tôi sẽ giải đáp từng bài tập trang 35, 36, 37, 38 một cách đầy đủ và chính xác.

Trong không gian (Oxyz), cho mặt phẳng (left( alpha right)) đi qua điểm ({M_0}left( {1;2;3} right)) và nhận (vec n = left( {7;5;2} right)) làm vectơ pháp tuyến. Gọi (Mleft( {x;y;z} right)) là một điểm tuỳ ý trong không gian. Tính tích vô hướng (vec n.overrightarrow {{M_0}M} ) theo (x,y,z).

TH3

    Trả lời câu hỏi Thực hành 3 trang 36 SGK Toán 12 Chân trời sáng tạo

    Cho hai mặt phẳng \(\left( \alpha \right)\), \(\left( \beta \right)\) có phương trình tổng quát là \(\left( \alpha \right):2x + 2y - 3z - 4 = 0\) và \(\left( \beta \right):x + 4z - 12 = 0\).

    a) Tìm một vectơ pháp tuyến của mỗi mặt phẳng \(\left( \alpha \right)\), \(\left( \beta \right)\).

    b) Tìm điểm thuộc mặt phẳng \(\left( \alpha \right)\) trong số các điểm \(M\left( {1;0;1} \right)\), \(N\left( {1;1;0} \right)\).

    Phương pháp giải:

    a) Một vectơ pháp tuyến của mặt phẳng có phương trình \(Ax + By + Cz + D = 0\) (trong đó \(A\), \(B\), \(C\) không đồng thời bằng 0) là \(\vec n = \left( {A,B,C} \right)\).

    b) Điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) nằm trên mặt phẳng \(\left( \alpha \right):Ax + By + Cz + D = 0\) khi và chỉ khi \(A{x_0} + B{y_0} + C{z_0} + D = 0\)

    Lời giải chi tiết:

    a) Phương trình mặt phẳng \(\left( \alpha \right)\) là \(2x + 2y - 3z - 4 = 0\) nên \(\left( \alpha \right)\) nhận \(\overrightarrow {{n_{\left( \alpha \right)}}} = \left( {2;2; - 3} \right)\) làm một vectơ pháp tuyến.

    Phương trình mặt phẳng \(\left( \beta \right)\) là \(x + 4z - 12 = 0\) nên \(\left( \beta \right)\) nhận \(\overrightarrow {{n_{\left( \beta \right)}}} = \left( {1;0;4} \right)\) làm một vectơ pháp tuyến.

    b) Thay điểm \(M\left( {1;0;1} \right)\) vào phương trình mặt phẳng \(\left( \alpha \right)\), ta được:

    \(2.1 + 2.0 - 3.1 - 4 = - 5 \ne 0\).

    Vậy điểm \(M\) không thuộc \(\left( \alpha \right)\).

    Thay điểm \(N\left( {1;1;0} \right)\) vào phương trình mặt phẳng \(\left( \alpha \right)\), ta được:

    \(2.1 + 2.1 - 3.0 - 4 = 0\).

    Vậy điểm \(N\) thuộc \(\left( \alpha \right)\).

    HĐ4

      Trả lời câu hỏi Hoạt động 4 trang 36 SGK Toán 12 Chân trời sáng tạo

      Trong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right)\) đi qua điểm \({M_0}\left( {{x_0},{y_0},{z_0}} \right)\) và nhận \(\vec n = \left( {A,B,C} \right)\) làm vectơ pháp tuyến. Gọi \(M\left( {x,y,z} \right)\) là một điểm tuỳ ý trong không gian.

      a) Tìm toạ độ của \(\overrightarrow {{M_0}M} \).

      b) Tính tích vô hướng \(\vec n.\overrightarrow {{M_0}M} \).

      c) Lập phương trình tổng quát của mặt phẳng \(\left( \alpha \right)\).

      Phương pháp giải:

      a) Toạ độ của \(\overrightarrow {{M_0}M} \) là \(\left( {{x_M} - {x_{{M_0}}};{y_M} - {y_{{M_0}}};{z_M} - {z_{{M_0}}}} \right)\)

      b) Sử dụng công thức tích vô hướng để tính \(\vec n.\overrightarrow {{M_0}M} \).

      c) Để lập được phương trình tổng quát của mặt phẳng \(\left( \alpha \right)\), điểm \(M\left( {x,y,z} \right)\) được chọn phải nằm trên \(\left( \alpha \right)\), điều này có nghĩa là \(\vec n.\overrightarrow {{M_0}M} = 0\)

      Lời giải chi tiết:

      a) Toạ độ của \(\overrightarrow {{M_0}M} \) là \(\left( {{x_M} - {x_{{M_0}}};{y_M} - {y_{{M_0}}};{z_M} - {z_{{M_0}}}} \right) = \left( {x - {x_0};y - {y_0};z - {z_0}} \right)\)

      b) Ta có: \(\vec n.\overrightarrow {{M_0}M} = A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right)\)

      c) Để lập được phương trình tổng quát của mặt phẳng \(\left( \alpha \right)\), điểm \(M\left( {x,y,z} \right)\) được chọn phải nằm trên \(\left( \alpha \right)\), điều này có nghĩa là \(\vec n.\overrightarrow {{M_0}M} = 0\).

      Suy ra \(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\)

      Vậy phương trình mặt phẳng \(\left( \alpha \right)\) là \(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\)

      HĐ5

        Trả lời câu hỏi Hoạt động 5 trang 36 SGK Toán 12 Chân trời sáng tạo

        Trong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right)\) đi qua điểm \(M\left( {0,2,1} \right)\) và có cặp vectơ chỉ phương là \(\vec a = \left( {1;3;1} \right)\), \(\vec b = \left( {2;0;1} \right)\)

        a) Tìm toạ độ một vectơ pháp tuyến của mặt phẳng \(\left( \alpha \right)\).

        b) Lập phương trình của mặt phẳng \(\left( \alpha \right)\).

        Phương pháp giải:

        a) Do \(\left( \alpha \right)\) nhận \(\vec a\) và \(\vec b\) làm một cặp vectơ chỉ phương, nên \(\left( \alpha \right)\) sẽ nhận vectơ \(\vec n = \left[ {\vec a,\vec b} \right]\) làm một vectơ pháp tuyến.

        b) Phương trình mặt phẳng \(\left( \alpha \right)\) đi qua \({M_0}\left( {{x_0},{y_0},{z_0}} \right)\) và nhận \(\vec n = \left( {A;B;C} \right)\) làm một vectơ pháp tuyến là .

        Lời giải chi tiết:

        a) Do \(\left( \alpha \right)\) nhận \(\vec a\) và \(\vec b\) làm một cặp vectơ chỉ phương, nên \(\left( \alpha \right)\) sẽ nhận vectơ \(\vec n = \left[ {\vec a,\vec b} \right]\) làm một vectơ pháp tuyến.

        Tích có hướng của hai vectơ \(\vec a\) và \(\vec b\) là:

        \(\left[ {\vec a,\vec b} \right] = \left( {3.1 - 1.0;1.2 - 1.1;1.0 - 3.2} \right) = \left( {3;1; - 6} \right)\).

        Vậy \(\left( \alpha \right)\) nhận \(\vec n = \left( {3;1; - 6} \right)\) làm một vectơ pháp tuyến.

        b) Mặt phẳng \(\left( \alpha \right)\) đi qua \(M\left( {0,2,1} \right)\) và nhận \(\vec n = \left( {3;1; - 6} \right)\) làm một vectơ pháp tuyến, nên phương trình mặt phẳng \(\left( \alpha \right)\) là:

        \(3\left( {x - 0} \right) + 1\left( {y - 2} \right) - 6\left( {z - 1} \right) = 0 \Leftrightarrow 3x + y - 6z + 4 = 0\).

        HĐ6

          Trả lời câu hỏi Hoạt động 6 trang 37 SGK Toán 12 Chân trời sáng tạo

          Trong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right)\) đi qua ba điểm \(A\left( {0;1;1} \right)\), \(B\left( {2;4;3} \right)\), \(C\left( {5;3;1} \right)\).

          a) Tìm toạ độ một cặp vectơ chỉ phương của mặt phẳng \(\left( \alpha \right)\).

          b) Tìm toạ độ một vectơ pháp tuyến của mặt phẳng \(\left( \alpha \right)\).

          c) Lập phương trình của mặt phẳng \(\left( \alpha \right)\).

          Phương pháp giải:

          a) Mặt phẳng \(\left( \alpha \right)\) đi qua ba điểm \(A\), \(B\), \(C\) nên có cặp vectơ chỉ phương là \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \).

          b) Một vectơ pháp tuyến của \(\left( \alpha \right)\) là \(\vec n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\).

          c) Phương trình mặt phẳng \(\left( \alpha \right)\) đi qua \({M_0}\left( {{x_0},{y_0},{z_0}} \right)\) và nhận \(\vec n = \left( {A;B;C} \right)\) làm một vectơ pháp tuyến là \(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\).

          Lời giải chi tiết:

          a) Mặt phẳng \(\left( \alpha \right)\) đi qua ba điểm \(A\left( {0;1;1} \right)\), \(B\left( {2;4;3} \right)\), \(C\left( {5;3;1} \right)\) nên có cặp vectơ chỉ phương là \(\overrightarrow {AB} = \left( {2;3;2} \right)\) và \(\overrightarrow {AC} = \left( {5;2;0} \right)\).

          b) Do \(\left( \alpha \right)\) có một cặp vectơ chỉ phương là \(\overrightarrow {AB} = \left( {2;3;2} \right)\) và \(\overrightarrow {AC} = \left( {5;2;0} \right)\), nên một vectơ pháp tuyến của \(\left( \alpha \right)\) là:

          \(\vec n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {3.0 - 2.2;2.5 - 2.0;2.2 - 3.5} \right) = \left( { - 4;10; - 11} \right)\).

          c) Mặt phẳng \(\left( \alpha \right)\) đi qua \(A\left( {0;1;1} \right)\) và có một vectơ pháp tuyến là \(\vec n = \left( { - 4;10; - 11} \right)\) nên phương trình mặt phẳng \(\left( \alpha \right)\) là:

          \( - 4\left( {x - 0} \right) + 10\left( {y - 1} \right) - 11\left( {z - 1} \right) = 0 \Leftrightarrow - 4x + 10y - 11z + 1 = 0\).

          TH4

            Trả lời câu hỏi Thực hành 4 trang 38 SGK Toán 12 Chân trời sáng tạo

            Viết phương trình mặt phẳng \(\left( P \right)\) trong mỗi trường hợp sau:

            a) \(\left( P \right)\) đi qua điểm \(A\left( {2;0; - 1} \right)\) và có vectơ pháp tuyến \(\vec n = \left( {5; - 2;7} \right)\).

            b) \(\left( P \right)\) đi qua điểm \(B\left( { - 2;3;0} \right)\) và có cặp vectơ chỉ phương là \(\vec u = \left( {2;2; - 1} \right)\), \(\vec v = \left( {3;1;0} \right)\).

            c) \(\left( P \right)\) đi qua ba điểm \(A\left( {2;1;5} \right)\), \(B\left( {3;2;7} \right)\), \(C\left( {4;1;6} \right)\).

            d) \(\left( P \right)\) đi qua ba điểm \(M\left( {7;0;0} \right)\), \(N\left( {0; - 2;0} \right)\), \(P\left( {0;0;9} \right)\).

            Phương pháp giải:

            a) Phương trình mặt phẳng \(\left( P \right)\) đi qua \({M_0}\left( {{x_0},{y_0},{z_0}} \right)\) và nhận \(\vec n = \left( {A;B;C} \right)\) làm một vectơ pháp tuyến là \(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\).

            b) Một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) là \(\vec n = \left[ {\vec u,\vec v} \right]\). Sau đó viết phương trình mặt phẳng \(\left( P \right)\) khi biết một điểm đi qua và một vectơ pháp tuyến.

            c) Xác định một cặp vectơ chỉ phương, từ đó tính tích có hướng của cặp vectơ chỉ phương đó để tìm một vectơ pháp tuyến của \(\left( P \right)\). Sau đó viết phương trình mặt phẳng \(\left( P \right)\) khi biết một điểm đi qua và một vectơ pháp tuyến.

            d) Sử dụng phương trình mặt phẳng theo đoạn chắn.

            Lời giải chi tiết:

            a) Mặt phẳng \(\left( P \right)\) đi qua điểm \(A\left( {2;0; - 1} \right)\) và có một vectơ pháp tuyến \(\vec n = \left( {5; - 2;7} \right)\) nên có phương trình là \(5\left( {x - 2} \right) - 2\left( {y - 0} \right) + 7\left( {z + 1} \right) = 0 \Leftrightarrow 5x - 2y + 7z - 3 = 0\).

            b) Một vectơ pháp tuyến của \(\left( P \right)\) là:

            \(\vec n = \left[ {\vec u,\vec v} \right] = \left( {2.0 - \left( { - 1} \right).1; - 1.3 - 2.0;2.1 - 2.3} \right) = \left( {1; - 3; - 4} \right)\).

            Mặt phẳng \(\left( P \right)\) đi qua \(B\left( { - 2;3;0} \right)\) và có một vectơ pháp tuyến \(\vec n = \left( {1; - 3; - 4} \right)\) nên có phương trình là \(1\left( {x + 2} \right) - 3\left( {y - 3} \right) - 4\left( {z - 0} \right) = 0 \Leftrightarrow x - 3y - 4z + 11 = 0\).

            c) Mặt phẳng \(\left( P \right)\) đi qua ba điểm \(A\left( {2;1;5} \right)\), \(B\left( {3;2;7} \right)\), \(C\left( {4;1;6} \right)\) nên có 1 cặp vectơ chỉ phương là \(\overrightarrow {AB} = \left( {1;1;2} \right)\) và \(\overrightarrow {AC} = \left( {2;0;1} \right)\). Do đó một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) là \(\vec n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {1.1 - 2.0;2.2 - 1.1;1.0 - 1.2} \right) = \left( {1;3; - 2} \right)\).

            Mặt phẳng \(\left( P \right)\) đi qua \(A\left( {2;1;5} \right)\) và có một vectơ pháp tuyến \(\vec n = \left( {1;3; - 2} \right)\) nên có phương trình là \(1\left( {x - 2} \right) + 3\left( {y - 1} \right) - 2\left( {z - 5} \right) = 0 \Leftrightarrow x + 3y - 2z + 5 = 0\).

            d) Mặt phẳng \(\left( P \right)\) đi qua ba điểm \(M\left( {7;0;0} \right)\), \(N\left( {0; - 2;0} \right)\), \(P\left( {0;0;9} \right)\) nên phương trình mặt phẳng \(\left( P \right)\) là \(\frac{x}{7} + \frac{y}{{ - 2}} + \frac{z}{9} = 1\).

            VD3

              Trả lời câu hỏi Vận dụng 3 trang 38 SGK Toán 12 Chân trời sáng tạo

              Trong không gian \(Oxyz\), cho hình lăng trụ \(OAB.O'A'B'\). Biết \(O\) là gốc toạ độ, \(A\left( {2;0;0} \right)\), \(B\left( {0;3;0} \right)\), \(O'\left( {0;0;5} \right)\). Viết phương trình các mặt phẳng \(\left( {O'AB} \right)\) và \(\left( {O'A'B'} \right)\).

              Giải mục 3 trang 35, 36, 37, 38 SGK Toán 12 tập 2 - Chân trời sáng tạo 6 1

              Phương pháp giải:

              Viết phương trình mặt phẳng \(\left( {O'AB} \right)\) dưới dạng phương trình mặt phẳng theo đoạn chắn. Viết phương trình mặt phẳng \(\left( {O'A'B'} \right)\) do nó đi qua điểm \(O'\) và có một vectơ pháp tuyến \(OO'\).

              Lời giải chi tiết:

              Mặt phẳng \(\left( {O'AB} \right)\) đi qua \(A\left( {2;0;0} \right)\), \(B\left( {0;3;0} \right)\), \(O'\left( {0;0;5} \right)\) nên phương trình mặt phẳng \(\left( {O'AB} \right)\) là \(\frac{x}{2} + \frac{y}{3} + \frac{z}{5} = 1\).

              Theo hình vẽ, hình lăng trụ \(OAB.O'A'B'\) có các cạnh bên vuông góc với đáy, nên ta có \(OO' \bot \left( {O'A'B'} \right)\). Suy ra \[\overrightarrow {OO'} = \left( {0;0;5} \right)\] là một vectơ pháp tuyến của mặt phẳng \(\left( {O'A'B'} \right)\).

              Hơn nữa, mặt phẳng \(\left( {O'A'B'} \right)\) đi qua \(O'\left( {0;0;5} \right)\) nên phương trình mặt phẳng \(\left( {O'A'B'} \right)\) là \(0\left( {x - 0} \right) + 0\left( {y - 0} \right) + 5\left( {z - 5} \right) = 0 \Leftrightarrow z - 5 = 0\).

              HĐ3

                Trả lời câu hỏi Hoạt động 3 trang 35 SGK Toán 12 Chân trời sáng tạo

                Trong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right)\) đi qua điểm \({M_0}\left( {1;2;3} \right)\) và nhận \(\vec n = \left( {7;5;2} \right)\) làm vectơ pháp tuyến. Gọi \(M\left( {x;y;z} \right)\) là một điểm tuỳ ý trong không gian. Tính tích vô hướng \(\vec n.\overrightarrow {{M_0}M} \) theo \(x,y,z\).

                Giải mục 3 trang 35, 36, 37, 38 SGK Toán 12 tập 2 - Chân trời sáng tạo 0 1

                Phương pháp giải:

                Tính toạ độ vectơ \(\overrightarrow {{M_0}M} \), sau đó tính tích vô hướng \(\vec n.\overrightarrow {{M_0}M} \).

                Lời giải chi tiết:

                Toạ độ của vectơ \(\overrightarrow {{M_0}M} \) là \(\left( {x - 1;y - 2;z - 3} \right)\)

                Suy ra \(\vec n.\overrightarrow {{M_0}M} = 7\left( {x - 1} \right) + 5\left( {y - 2} \right) + 2\left( {z - 3} \right) = 7x + 5y + 2z - 23\)

                Lựa chọn câu để xem lời giải nhanh hơn
                • HĐ3
                • TH3
                • HĐ4
                • HĐ5
                • HĐ6
                • TH4
                • VD3

                Trả lời câu hỏi Hoạt động 3 trang 35 SGK Toán 12 Chân trời sáng tạo

                Trong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right)\) đi qua điểm \({M_0}\left( {1;2;3} \right)\) và nhận \(\vec n = \left( {7;5;2} \right)\) làm vectơ pháp tuyến. Gọi \(M\left( {x;y;z} \right)\) là một điểm tuỳ ý trong không gian. Tính tích vô hướng \(\vec n.\overrightarrow {{M_0}M} \) theo \(x,y,z\).

                Giải mục 3 trang 35, 36, 37, 38 SGK Toán 12 tập 2 - Chân trời sáng tạo 1

                Phương pháp giải:

                Tính toạ độ vectơ \(\overrightarrow {{M_0}M} \), sau đó tính tích vô hướng \(\vec n.\overrightarrow {{M_0}M} \).

                Lời giải chi tiết:

                Toạ độ của vectơ \(\overrightarrow {{M_0}M} \) là \(\left( {x - 1;y - 2;z - 3} \right)\)

                Suy ra \(\vec n.\overrightarrow {{M_0}M} = 7\left( {x - 1} \right) + 5\left( {y - 2} \right) + 2\left( {z - 3} \right) = 7x + 5y + 2z - 23\)

                Trả lời câu hỏi Thực hành 3 trang 36 SGK Toán 12 Chân trời sáng tạo

                Cho hai mặt phẳng \(\left( \alpha \right)\), \(\left( \beta \right)\) có phương trình tổng quát là \(\left( \alpha \right):2x + 2y - 3z - 4 = 0\) và \(\left( \beta \right):x + 4z - 12 = 0\).

                a) Tìm một vectơ pháp tuyến của mỗi mặt phẳng \(\left( \alpha \right)\), \(\left( \beta \right)\).

                b) Tìm điểm thuộc mặt phẳng \(\left( \alpha \right)\) trong số các điểm \(M\left( {1;0;1} \right)\), \(N\left( {1;1;0} \right)\).

                Phương pháp giải:

                a) Một vectơ pháp tuyến của mặt phẳng có phương trình \(Ax + By + Cz + D = 0\) (trong đó \(A\), \(B\), \(C\) không đồng thời bằng 0) là \(\vec n = \left( {A,B,C} \right)\).

                b) Điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) nằm trên mặt phẳng \(\left( \alpha \right):Ax + By + Cz + D = 0\) khi và chỉ khi \(A{x_0} + B{y_0} + C{z_0} + D = 0\)

                Lời giải chi tiết:

                a) Phương trình mặt phẳng \(\left( \alpha \right)\) là \(2x + 2y - 3z - 4 = 0\) nên \(\left( \alpha \right)\) nhận \(\overrightarrow {{n_{\left( \alpha \right)}}} = \left( {2;2; - 3} \right)\) làm một vectơ pháp tuyến.

                Phương trình mặt phẳng \(\left( \beta \right)\) là \(x + 4z - 12 = 0\) nên \(\left( \beta \right)\) nhận \(\overrightarrow {{n_{\left( \beta \right)}}} = \left( {1;0;4} \right)\) làm một vectơ pháp tuyến.

                b) Thay điểm \(M\left( {1;0;1} \right)\) vào phương trình mặt phẳng \(\left( \alpha \right)\), ta được:

                \(2.1 + 2.0 - 3.1 - 4 = - 5 \ne 0\).

                Vậy điểm \(M\) không thuộc \(\left( \alpha \right)\).

                Thay điểm \(N\left( {1;1;0} \right)\) vào phương trình mặt phẳng \(\left( \alpha \right)\), ta được:

                \(2.1 + 2.1 - 3.0 - 4 = 0\).

                Vậy điểm \(N\) thuộc \(\left( \alpha \right)\).

                Trả lời câu hỏi Hoạt động 4 trang 36 SGK Toán 12 Chân trời sáng tạo

                Trong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right)\) đi qua điểm \({M_0}\left( {{x_0},{y_0},{z_0}} \right)\) và nhận \(\vec n = \left( {A,B,C} \right)\) làm vectơ pháp tuyến. Gọi \(M\left( {x,y,z} \right)\) là một điểm tuỳ ý trong không gian.

                a) Tìm toạ độ của \(\overrightarrow {{M_0}M} \).

                b) Tính tích vô hướng \(\vec n.\overrightarrow {{M_0}M} \).

                c) Lập phương trình tổng quát của mặt phẳng \(\left( \alpha \right)\).

                Phương pháp giải:

                a) Toạ độ của \(\overrightarrow {{M_0}M} \) là \(\left( {{x_M} - {x_{{M_0}}};{y_M} - {y_{{M_0}}};{z_M} - {z_{{M_0}}}} \right)\)

                b) Sử dụng công thức tích vô hướng để tính \(\vec n.\overrightarrow {{M_0}M} \).

                c) Để lập được phương trình tổng quát của mặt phẳng \(\left( \alpha \right)\), điểm \(M\left( {x,y,z} \right)\) được chọn phải nằm trên \(\left( \alpha \right)\), điều này có nghĩa là \(\vec n.\overrightarrow {{M_0}M} = 0\)

                Lời giải chi tiết:

                a) Toạ độ của \(\overrightarrow {{M_0}M} \) là \(\left( {{x_M} - {x_{{M_0}}};{y_M} - {y_{{M_0}}};{z_M} - {z_{{M_0}}}} \right) = \left( {x - {x_0};y - {y_0};z - {z_0}} \right)\)

                b) Ta có: \(\vec n.\overrightarrow {{M_0}M} = A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right)\)

                c) Để lập được phương trình tổng quát của mặt phẳng \(\left( \alpha \right)\), điểm \(M\left( {x,y,z} \right)\) được chọn phải nằm trên \(\left( \alpha \right)\), điều này có nghĩa là \(\vec n.\overrightarrow {{M_0}M} = 0\).

                Suy ra \(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\)

                Vậy phương trình mặt phẳng \(\left( \alpha \right)\) là \(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\)

                Trả lời câu hỏi Hoạt động 5 trang 36 SGK Toán 12 Chân trời sáng tạo

                Trong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right)\) đi qua điểm \(M\left( {0,2,1} \right)\) và có cặp vectơ chỉ phương là \(\vec a = \left( {1;3;1} \right)\), \(\vec b = \left( {2;0;1} \right)\)

                a) Tìm toạ độ một vectơ pháp tuyến của mặt phẳng \(\left( \alpha \right)\).

                b) Lập phương trình của mặt phẳng \(\left( \alpha \right)\).

                Phương pháp giải:

                a) Do \(\left( \alpha \right)\) nhận \(\vec a\) và \(\vec b\) làm một cặp vectơ chỉ phương, nên \(\left( \alpha \right)\) sẽ nhận vectơ \(\vec n = \left[ {\vec a,\vec b} \right]\) làm một vectơ pháp tuyến.

                b) Phương trình mặt phẳng \(\left( \alpha \right)\) đi qua \({M_0}\left( {{x_0},{y_0},{z_0}} \right)\) và nhận \(\vec n = \left( {A;B;C} \right)\) làm một vectơ pháp tuyến là .

                Lời giải chi tiết:

                a) Do \(\left( \alpha \right)\) nhận \(\vec a\) và \(\vec b\) làm một cặp vectơ chỉ phương, nên \(\left( \alpha \right)\) sẽ nhận vectơ \(\vec n = \left[ {\vec a,\vec b} \right]\) làm một vectơ pháp tuyến.

                Tích có hướng của hai vectơ \(\vec a\) và \(\vec b\) là:

                \(\left[ {\vec a,\vec b} \right] = \left( {3.1 - 1.0;1.2 - 1.1;1.0 - 3.2} \right) = \left( {3;1; - 6} \right)\).

                Vậy \(\left( \alpha \right)\) nhận \(\vec n = \left( {3;1; - 6} \right)\) làm một vectơ pháp tuyến.

                b) Mặt phẳng \(\left( \alpha \right)\) đi qua \(M\left( {0,2,1} \right)\) và nhận \(\vec n = \left( {3;1; - 6} \right)\) làm một vectơ pháp tuyến, nên phương trình mặt phẳng \(\left( \alpha \right)\) là:

                \(3\left( {x - 0} \right) + 1\left( {y - 2} \right) - 6\left( {z - 1} \right) = 0 \Leftrightarrow 3x + y - 6z + 4 = 0\).

                Trả lời câu hỏi Hoạt động 6 trang 37 SGK Toán 12 Chân trời sáng tạo

                Trong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right)\) đi qua ba điểm \(A\left( {0;1;1} \right)\), \(B\left( {2;4;3} \right)\), \(C\left( {5;3;1} \right)\).

                a) Tìm toạ độ một cặp vectơ chỉ phương của mặt phẳng \(\left( \alpha \right)\).

                b) Tìm toạ độ một vectơ pháp tuyến của mặt phẳng \(\left( \alpha \right)\).

                c) Lập phương trình của mặt phẳng \(\left( \alpha \right)\).

                Phương pháp giải:

                a) Mặt phẳng \(\left( \alpha \right)\) đi qua ba điểm \(A\), \(B\), \(C\) nên có cặp vectơ chỉ phương là \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \).

                b) Một vectơ pháp tuyến của \(\left( \alpha \right)\) là \(\vec n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\).

                c) Phương trình mặt phẳng \(\left( \alpha \right)\) đi qua \({M_0}\left( {{x_0},{y_0},{z_0}} \right)\) và nhận \(\vec n = \left( {A;B;C} \right)\) làm một vectơ pháp tuyến là \(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\).

                Lời giải chi tiết:

                a) Mặt phẳng \(\left( \alpha \right)\) đi qua ba điểm \(A\left( {0;1;1} \right)\), \(B\left( {2;4;3} \right)\), \(C\left( {5;3;1} \right)\) nên có cặp vectơ chỉ phương là \(\overrightarrow {AB} = \left( {2;3;2} \right)\) và \(\overrightarrow {AC} = \left( {5;2;0} \right)\).

                b) Do \(\left( \alpha \right)\) có một cặp vectơ chỉ phương là \(\overrightarrow {AB} = \left( {2;3;2} \right)\) và \(\overrightarrow {AC} = \left( {5;2;0} \right)\), nên một vectơ pháp tuyến của \(\left( \alpha \right)\) là:

                \(\vec n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {3.0 - 2.2;2.5 - 2.0;2.2 - 3.5} \right) = \left( { - 4;10; - 11} \right)\).

                c) Mặt phẳng \(\left( \alpha \right)\) đi qua \(A\left( {0;1;1} \right)\) và có một vectơ pháp tuyến là \(\vec n = \left( { - 4;10; - 11} \right)\) nên phương trình mặt phẳng \(\left( \alpha \right)\) là:

                \( - 4\left( {x - 0} \right) + 10\left( {y - 1} \right) - 11\left( {z - 1} \right) = 0 \Leftrightarrow - 4x + 10y - 11z + 1 = 0\).

                Trả lời câu hỏi Thực hành 4 trang 38 SGK Toán 12 Chân trời sáng tạo

                Viết phương trình mặt phẳng \(\left( P \right)\) trong mỗi trường hợp sau:

                a) \(\left( P \right)\) đi qua điểm \(A\left( {2;0; - 1} \right)\) và có vectơ pháp tuyến \(\vec n = \left( {5; - 2;7} \right)\).

                b) \(\left( P \right)\) đi qua điểm \(B\left( { - 2;3;0} \right)\) và có cặp vectơ chỉ phương là \(\vec u = \left( {2;2; - 1} \right)\), \(\vec v = \left( {3;1;0} \right)\).

                c) \(\left( P \right)\) đi qua ba điểm \(A\left( {2;1;5} \right)\), \(B\left( {3;2;7} \right)\), \(C\left( {4;1;6} \right)\).

                d) \(\left( P \right)\) đi qua ba điểm \(M\left( {7;0;0} \right)\), \(N\left( {0; - 2;0} \right)\), \(P\left( {0;0;9} \right)\).

                Phương pháp giải:

                a) Phương trình mặt phẳng \(\left( P \right)\) đi qua \({M_0}\left( {{x_0},{y_0},{z_0}} \right)\) và nhận \(\vec n = \left( {A;B;C} \right)\) làm một vectơ pháp tuyến là \(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\).

                b) Một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) là \(\vec n = \left[ {\vec u,\vec v} \right]\). Sau đó viết phương trình mặt phẳng \(\left( P \right)\) khi biết một điểm đi qua và một vectơ pháp tuyến.

                c) Xác định một cặp vectơ chỉ phương, từ đó tính tích có hướng của cặp vectơ chỉ phương đó để tìm một vectơ pháp tuyến của \(\left( P \right)\). Sau đó viết phương trình mặt phẳng \(\left( P \right)\) khi biết một điểm đi qua và một vectơ pháp tuyến.

                d) Sử dụng phương trình mặt phẳng theo đoạn chắn.

                Lời giải chi tiết:

                a) Mặt phẳng \(\left( P \right)\) đi qua điểm \(A\left( {2;0; - 1} \right)\) và có một vectơ pháp tuyến \(\vec n = \left( {5; - 2;7} \right)\) nên có phương trình là \(5\left( {x - 2} \right) - 2\left( {y - 0} \right) + 7\left( {z + 1} \right) = 0 \Leftrightarrow 5x - 2y + 7z - 3 = 0\).

                b) Một vectơ pháp tuyến của \(\left( P \right)\) là:

                \(\vec n = \left[ {\vec u,\vec v} \right] = \left( {2.0 - \left( { - 1} \right).1; - 1.3 - 2.0;2.1 - 2.3} \right) = \left( {1; - 3; - 4} \right)\).

                Mặt phẳng \(\left( P \right)\) đi qua \(B\left( { - 2;3;0} \right)\) và có một vectơ pháp tuyến \(\vec n = \left( {1; - 3; - 4} \right)\) nên có phương trình là \(1\left( {x + 2} \right) - 3\left( {y - 3} \right) - 4\left( {z - 0} \right) = 0 \Leftrightarrow x - 3y - 4z + 11 = 0\).

                c) Mặt phẳng \(\left( P \right)\) đi qua ba điểm \(A\left( {2;1;5} \right)\), \(B\left( {3;2;7} \right)\), \(C\left( {4;1;6} \right)\) nên có 1 cặp vectơ chỉ phương là \(\overrightarrow {AB} = \left( {1;1;2} \right)\) và \(\overrightarrow {AC} = \left( {2;0;1} \right)\). Do đó một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) là \(\vec n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {1.1 - 2.0;2.2 - 1.1;1.0 - 1.2} \right) = \left( {1;3; - 2} \right)\).

                Mặt phẳng \(\left( P \right)\) đi qua \(A\left( {2;1;5} \right)\) và có một vectơ pháp tuyến \(\vec n = \left( {1;3; - 2} \right)\) nên có phương trình là \(1\left( {x - 2} \right) + 3\left( {y - 1} \right) - 2\left( {z - 5} \right) = 0 \Leftrightarrow x + 3y - 2z + 5 = 0\).

                d) Mặt phẳng \(\left( P \right)\) đi qua ba điểm \(M\left( {7;0;0} \right)\), \(N\left( {0; - 2;0} \right)\), \(P\left( {0;0;9} \right)\) nên phương trình mặt phẳng \(\left( P \right)\) là \(\frac{x}{7} + \frac{y}{{ - 2}} + \frac{z}{9} = 1\).

                Trả lời câu hỏi Vận dụng 3 trang 38 SGK Toán 12 Chân trời sáng tạo

                Trong không gian \(Oxyz\), cho hình lăng trụ \(OAB.O'A'B'\). Biết \(O\) là gốc toạ độ, \(A\left( {2;0;0} \right)\), \(B\left( {0;3;0} \right)\), \(O'\left( {0;0;5} \right)\). Viết phương trình các mặt phẳng \(\left( {O'AB} \right)\) và \(\left( {O'A'B'} \right)\).

                Giải mục 3 trang 35, 36, 37, 38 SGK Toán 12 tập 2 - Chân trời sáng tạo 2

                Phương pháp giải:

                Viết phương trình mặt phẳng \(\left( {O'AB} \right)\) dưới dạng phương trình mặt phẳng theo đoạn chắn. Viết phương trình mặt phẳng \(\left( {O'A'B'} \right)\) do nó đi qua điểm \(O'\) và có một vectơ pháp tuyến \(OO'\).

                Lời giải chi tiết:

                Mặt phẳng \(\left( {O'AB} \right)\) đi qua \(A\left( {2;0;0} \right)\), \(B\left( {0;3;0} \right)\), \(O'\left( {0;0;5} \right)\) nên phương trình mặt phẳng \(\left( {O'AB} \right)\) là \(\frac{x}{2} + \frac{y}{3} + \frac{z}{5} = 1\).

                Theo hình vẽ, hình lăng trụ \(OAB.O'A'B'\) có các cạnh bên vuông góc với đáy, nên ta có \(OO' \bot \left( {O'A'B'} \right)\). Suy ra \[\overrightarrow {OO'} = \left( {0;0;5} \right)\] là một vectơ pháp tuyến của mặt phẳng \(\left( {O'A'B'} \right)\).

                Hơn nữa, mặt phẳng \(\left( {O'A'B'} \right)\) đi qua \(O'\left( {0;0;5} \right)\) nên phương trình mặt phẳng \(\left( {O'A'B'} \right)\) là \(0\left( {x - 0} \right) + 0\left( {y - 0} \right) + 5\left( {z - 5} \right) = 0 \Leftrightarrow z - 5 = 0\).

                Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải mục 3 trang 35, 36, 37, 38 SGK Toán 12 tập 2 - Chân trời sáng tạo đặc sắc thuộc chuyên mục đề toán lớp 12 trên nền tảng môn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

                Giải mục 3 trang 35, 36, 37, 38 SGK Toán 12 tập 2 - Chân trời sáng tạo: Tổng quan và Phương pháp giải

                Mục 3 trong SGK Toán 12 tập 2 Chân trời sáng tạo là một phần quan trọng, tập trung vào việc củng cố và mở rộng kiến thức về... (nêu chủ đề mục 3). Việc nắm vững các khái niệm và kỹ năng trong mục này là nền tảng để giải quyết các bài toán phức tạp hơn trong chương trình học.

                Nội dung chính của Mục 3

                • Bài tập trang 35: Các bài tập này thường tập trung vào việc... (mô tả nội dung bài tập trang 35).
                • Bài tập trang 36: Ở trang này, học sinh sẽ được làm quen với... (mô tả nội dung bài tập trang 36).
                • Bài tập trang 37: Các bài tập trang 37 thường yêu cầu học sinh vận dụng kiến thức để... (mô tả nội dung bài tập trang 37).
                • Bài tập trang 38: Đây là phần bài tập tổng hợp, giúp học sinh rèn luyện kỹ năng... (mô tả nội dung bài tập trang 38).

                Phương pháp giải các bài tập trong Mục 3

                Để giải quyết hiệu quả các bài tập trong Mục 3, học sinh cần nắm vững các phương pháp sau:

                1. Hiểu rõ lý thuyết: Đọc kỹ SGK, ghi chép các khái niệm, định lý và công thức quan trọng.
                2. Phân tích đề bài: Xác định rõ yêu cầu của đề bài, các dữ kiện đã cho và các đại lượng cần tìm.
                3. Lựa chọn phương pháp giải phù hợp: Dựa vào đặc điểm của đề bài để chọn phương pháp giải tối ưu.
                4. Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

                Giải chi tiết bài tập trang 35

                Bài 1: (Đề bài)...

                Lời giải: (Giải chi tiết bài tập 1)...

                Giải chi tiết bài tập trang 36

                Bài 2: (Đề bài)...

                Lời giải: (Giải chi tiết bài tập 2)...

                Giải chi tiết bài tập trang 37

                Bài 3: (Đề bài)...

                Lời giải: (Giải chi tiết bài tập 3)...

                Giải chi tiết bài tập trang 38

                Bài 4: (Đề bài)...

                Lời giải: (Giải chi tiết bài tập 4)...

                Lưu ý quan trọng

                Trong quá trình giải bài tập, hãy chú ý đến các đơn vị đo lường, các điều kiện của bài toán và các trường hợp đặc biệt. Việc sử dụng máy tính bỏ túi có thể giúp bạn tính toán nhanh chóng và chính xác hơn.

                Kết luận

                Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả mà giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn trong việc học tập và giải quyết các bài tập Toán 12 tập 2. Chúc các em học tốt!

                Bài tậpTrangNội dung chính
                Bài 135...
                Bài 236...
                Bài 337...
                Bài 438...

                Tài liệu, đề thi và đáp án Toán 12