Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 tập 2. Bài viết này sẽ hướng dẫn bạn giải bài tập 10 trang 29 SGK Toán 12 tập 2 theo chương trình Chân trời sáng tạo.
Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và giúp bạn nắm vững kiến thức Toán học.
Tốc độ chuyển động (v{rm{ }}left( {{rm{m/s}}} right)) của một ca nô trong khoảng thời gian 40 giây được thể hiện như hình dưới đây. Quãng đường đi được của ca nô trong khoảng thời gian này là: A. 400 m B. 350 m C. 310 m D. 200 m
Đề bài
Tốc độ chuyển động \(v{\rm{ }}\left( {{\rm{m/s}}} \right)\) của một ca nô trong khoảng thời gian 40 giây được thể hiện như hình 1. Quãng đường đi được của ca nô trong khoảng thời gian này là:
A. 400 m
B. 350 m
C. 310 m
D. 200 m
Phương pháp giải - Xem chi tiết
Quãng đường đi được của ca nô trong khoảng thời gian 40 giây là \(s = \int\limits_0^{40} {v\left( t \right)dt} \).
Viết phương trình hàm \(v\left( t \right)\), sau đó tính tích phân \(s = \int\limits_0^{40} {v\left( t \right)dt} \).
Lời giải chi tiết
Đồ thị hàm số \(v\left( t \right)\) được chia thành 3 đường thằng \(OA\), \(AB\), \(BC\) như hình dưới đây.
Đường thẳng \(OA\) đi qua \(O\left( {0;0} \right)\) và \(A\left( {8;10} \right)\) nên phương trình đường thẳng \(OA\) là \(v = \frac{5}{4}t\).
Đường thẳng \(AB\) đi qua \(A\left( {8;10} \right)\) và \(B\left( {30;10} \right)\) nên phương trình đường thẳng \(AB\) là \(v = 10\).
Đường thẳng \(BC\) đi qua \(B\left( {30;10} \right)\) và \(C\left( {40;0} \right)\) nên phương trình đường thẳng \(BC\) là \(v = - t + 40\).
Vậy \(v\left( t \right) = \left\{ \begin{array}{l}\frac{5}{4}t{\rm{ }}\left( {0 \le t \le 8} \right)\\10{\rm{ }}\left( {8 \le t \le 30} \right)\\ - t + 40{\rm{ }}\left( {30 \le t \le 40} \right)\end{array} \right.\).
Do đó, quãng đường ca nô đi được trong 40 giây là
\(s = \int\limits_0^{40} {v\left( t \right)dt} = \int\limits_0^8 {v\left( t \right)dt} + \int\limits_8^{30} {v\left( t \right)dt} + \int\limits_{30}^{40} {v\left( t \right)dt} = \int\limits_0^8 {\frac{5}{4}tdt} + \int\limits_8^{30} {10dt} + \int\limits_{30}^{40} {\left( { - t + 40} \right)dt} \)
\( = \frac{5}{4}\left. {\left( {\frac{{{t^2}}}{2}} \right)} \right|_0^8 + 10\left. {\left( t \right)} \right|_8^{30} + \left. {\left( { - \frac{{{t^2}}}{2} + 40t} \right)} \right|_{30}^{40} = \frac{5}{4}.32 + 10.22 + 50 = 310\) (m).
Đáp án đúng là C
Bài tập 10 trang 29 SGK Toán 12 tập 2 thuộc chương trình Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến tốc độ thay đổi của một đại lượng. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài tập 10 thường bao gồm các dạng bài sau:
Để giúp các bạn học sinh giải quyết bài tập 10 trang 29 SGK Toán 12 tập 2 một cách hiệu quả, chúng tôi xin trình bày lời giải chi tiết cho từng dạng bài:
Lời giải:
f'(x) = 3x2 - 4x + 5
Lời giải:
g'(x) = 4x3 - 8x
Giải phương trình g'(x) = 0, ta được x = 0, x = √2, x = -√2
Xét dấu g'(x), ta thấy:
Vậy hàm số đạt cực đại tại x = -√2 và x = √2, đạt cực tiểu tại x = 0.
Lời giải:
h'(x) = 2x - 6
Giải phương trình h'(x) = 0, ta được x = 3
Xét dấu h'(x), ta thấy:
Vậy hàm số nghịch biến trên khoảng (-∞, 3) và đồng biến trên khoảng (3, +∞).
Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:
Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập trên, các bạn học sinh sẽ tự tin hơn khi giải bài tập 10 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo. Chúc các bạn học tập tốt!